Toward a better understanding of synthesis and processing of ceramic/self-assembled monolayer bilayer coatings
Ceramic/self-assembled monolayer (SAM) bilayer coatings can provide adequate protection for silicon devices, or act as a multipurpose coating for other electronic applications, due to synergistic effects by forming a hybrid coating structure. The organic SAM layer acts as a "template" for...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2005-05, Vol.34 (5), p.534-540 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 540 |
---|---|
container_issue | 5 |
container_start_page | 534 |
container_title | Journal of electronic materials |
container_volume | 34 |
creator | SALAMI, T. O YANG, Q CHITRE, K ZAREMBO, S CHO, J OLIVER, S. R. J |
description | Ceramic/self-assembled monolayer (SAM) bilayer coatings can provide adequate protection for silicon devices, or act as a multipurpose coating for other electronic applications, due to synergistic effects by forming a hybrid coating structure. The organic SAM layer acts as a "template" for the growth of the ceramic layer, while the ceramic layer can provide protection from environmental and mechanical impact. Low-temperature solution-based deposition techniques, namely, an in-situ solution method (biomimetic) and a hydrothermal method, have been employed in this study. Specifically, phosphonate-based (diethyl phosphatoethyl triethoxy silane) SAMs were used as a template to generate a zirconia ceramic layer at low temperatures. Other organic templates such as -SiCl^sub 3^-, -OH-, -HSO^sub 3^-, or -CH^sub 3^-terminated SAMs were also examined. The reactions to grow the ceramic film were found to be pH sensitive. The ceramic and SAM coatings were characterized by a variety of analytical techniques. A pathway for the formation of the ceramic coating is also discussed. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s11664-005-0062-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29478209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29478209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-4d36de24eafe39c2452357c0306c02ced8eefddbac0a0346f730610b618d50f23</originalsourceid><addsrcrecordid>eNpdUE1r3DAQFaWFbNP8gNxMIbk5mZFkrfcYQvMBgV5SyE3I0qh1sKVU46Xsv6-WXQjkMDyY98HjCXGOcIUA62tGNEa3AF09I1v4JFbYadVib14-ixUog20nVXcivjK_AmCHPa5Ees7_XAmNawZaFirNNgUqvLgUxvS7ybHhXVr-EI_c1F_zVrIn5iPnqbh59NdMU2wdM83DRKGZc8qT29W0YTygz26pHv4mvkQ3MZ0d8VT8uvvxfPvQPv28f7y9eWq9UmppdVAmkNTkIqmNl3rffO1BgfEgPYWeKIYwOA8OlDZxXRmEwWAfOohSnYrLQ27t-3dLvNh5ZE_T5BLlLVu50etewqYKv38QvuZtSbWblaA3qFHrKsKDyJfMXCjatzLOruwsgt3Pbw_z2zq_3c9voXoujsGOvZticcmP_G40fYcdoPoP08-Gww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204914144</pqid></control><display><type>article</type><title>Toward a better understanding of synthesis and processing of ceramic/self-assembled monolayer bilayer coatings</title><source>SpringerLink Journals - AutoHoldings</source><creator>SALAMI, T. O ; YANG, Q ; CHITRE, K ; ZAREMBO, S ; CHO, J ; OLIVER, S. R. J</creator><creatorcontrib>SALAMI, T. O ; YANG, Q ; CHITRE, K ; ZAREMBO, S ; CHO, J ; OLIVER, S. R. J</creatorcontrib><description>Ceramic/self-assembled monolayer (SAM) bilayer coatings can provide adequate protection for silicon devices, or act as a multipurpose coating for other electronic applications, due to synergistic effects by forming a hybrid coating structure. The organic SAM layer acts as a "template" for the growth of the ceramic layer, while the ceramic layer can provide protection from environmental and mechanical impact. Low-temperature solution-based deposition techniques, namely, an in-situ solution method (biomimetic) and a hydrothermal method, have been employed in this study. Specifically, phosphonate-based (diethyl phosphatoethyl triethoxy silane) SAMs were used as a template to generate a zirconia ceramic layer at low temperatures. Other organic templates such as -SiCl^sub 3^-, -OH-, -HSO^sub 3^-, or -CH^sub 3^-terminated SAMs were also examined. The reactions to grow the ceramic film were found to be pH sensitive. The ceramic and SAM coatings were characterized by a variety of analytical techniques. A pathway for the formation of the ceramic coating is also discussed. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-005-0062-0</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>New York, NY: Institute of Electrical and Electronics Engineers</publisher><subject>Applied sciences ; Ceramics ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Exact sciences and technology ; Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids) ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Micro- and nanoelectromechanical devices (mems/nems) ; Microelectromechanical systems ; Physics ; Protective coatings ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon ; Temperature ; Zirconium</subject><ispartof>Journal of electronic materials, 2005-05, Vol.34 (5), p.534-540</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Minerals, Metals & Materials Society May 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-4d36de24eafe39c2452357c0306c02ced8eefddbac0a0346f730610b618d50f23</citedby><cites>FETCH-LOGICAL-c333t-4d36de24eafe39c2452357c0306c02ced8eefddbac0a0346f730610b618d50f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16851501$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SALAMI, T. O</creatorcontrib><creatorcontrib>YANG, Q</creatorcontrib><creatorcontrib>CHITRE, K</creatorcontrib><creatorcontrib>ZAREMBO, S</creatorcontrib><creatorcontrib>CHO, J</creatorcontrib><creatorcontrib>OLIVER, S. R. J</creatorcontrib><title>Toward a better understanding of synthesis and processing of ceramic/self-assembled monolayer bilayer coatings</title><title>Journal of electronic materials</title><description>Ceramic/self-assembled monolayer (SAM) bilayer coatings can provide adequate protection for silicon devices, or act as a multipurpose coating for other electronic applications, due to synergistic effects by forming a hybrid coating structure. The organic SAM layer acts as a "template" for the growth of the ceramic layer, while the ceramic layer can provide protection from environmental and mechanical impact. Low-temperature solution-based deposition techniques, namely, an in-situ solution method (biomimetic) and a hydrothermal method, have been employed in this study. Specifically, phosphonate-based (diethyl phosphatoethyl triethoxy silane) SAMs were used as a template to generate a zirconia ceramic layer at low temperatures. Other organic templates such as -SiCl^sub 3^-, -OH-, -HSO^sub 3^-, or -CH^sub 3^-terminated SAMs were also examined. The reactions to grow the ceramic film were found to be pH sensitive. The ceramic and SAM coatings were characterized by a variety of analytical techniques. A pathway for the formation of the ceramic coating is also discussed. [PUBLICATION ABSTRACT]</description><subject>Applied sciences</subject><subject>Ceramics</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Micro- and nanoelectromechanical devices (mems/nems)</subject><subject>Microelectromechanical systems</subject><subject>Physics</subject><subject>Protective coatings</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon</subject><subject>Temperature</subject><subject>Zirconium</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdUE1r3DAQFaWFbNP8gNxMIbk5mZFkrfcYQvMBgV5SyE3I0qh1sKVU46Xsv6-WXQjkMDyY98HjCXGOcIUA62tGNEa3AF09I1v4JFbYadVib14-ixUog20nVXcivjK_AmCHPa5Ees7_XAmNawZaFirNNgUqvLgUxvS7ybHhXVr-EI_c1F_zVrIn5iPnqbh59NdMU2wdM83DRKGZc8qT29W0YTygz26pHv4mvkQ3MZ0d8VT8uvvxfPvQPv28f7y9eWq9UmppdVAmkNTkIqmNl3rffO1BgfEgPYWeKIYwOA8OlDZxXRmEwWAfOohSnYrLQ27t-3dLvNh5ZE_T5BLlLVu50etewqYKv38QvuZtSbWblaA3qFHrKsKDyJfMXCjatzLOruwsgt3Pbw_z2zq_3c9voXoujsGOvZticcmP_G40fYcdoPoP08-Gww</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>SALAMI, T. O</creator><creator>YANG, Q</creator><creator>CHITRE, K</creator><creator>ZAREMBO, S</creator><creator>CHO, J</creator><creator>OLIVER, S. R. J</creator><general>Institute of Electrical and Electronics Engineers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20050501</creationdate><title>Toward a better understanding of synthesis and processing of ceramic/self-assembled monolayer bilayer coatings</title><author>SALAMI, T. O ; YANG, Q ; CHITRE, K ; ZAREMBO, S ; CHO, J ; OLIVER, S. R. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-4d36de24eafe39c2452357c0306c02ced8eefddbac0a0346f730610b618d50f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Ceramics</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Micro- and nanoelectromechanical devices (mems/nems)</topic><topic>Microelectromechanical systems</topic><topic>Physics</topic><topic>Protective coatings</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon</topic><topic>Temperature</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SALAMI, T. O</creatorcontrib><creatorcontrib>YANG, Q</creatorcontrib><creatorcontrib>CHITRE, K</creatorcontrib><creatorcontrib>ZAREMBO, S</creatorcontrib><creatorcontrib>CHO, J</creatorcontrib><creatorcontrib>OLIVER, S. R. J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SALAMI, T. O</au><au>YANG, Q</au><au>CHITRE, K</au><au>ZAREMBO, S</au><au>CHO, J</au><au>OLIVER, S. R. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward a better understanding of synthesis and processing of ceramic/self-assembled monolayer bilayer coatings</atitle><jtitle>Journal of electronic materials</jtitle><date>2005-05-01</date><risdate>2005</risdate><volume>34</volume><issue>5</issue><spage>534</spage><epage>540</epage><pages>534-540</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Ceramic/self-assembled monolayer (SAM) bilayer coatings can provide adequate protection for silicon devices, or act as a multipurpose coating for other electronic applications, due to synergistic effects by forming a hybrid coating structure. The organic SAM layer acts as a "template" for the growth of the ceramic layer, while the ceramic layer can provide protection from environmental and mechanical impact. Low-temperature solution-based deposition techniques, namely, an in-situ solution method (biomimetic) and a hydrothermal method, have been employed in this study. Specifically, phosphonate-based (diethyl phosphatoethyl triethoxy silane) SAMs were used as a template to generate a zirconia ceramic layer at low temperatures. Other organic templates such as -SiCl^sub 3^-, -OH-, -HSO^sub 3^-, or -CH^sub 3^-terminated SAMs were also examined. The reactions to grow the ceramic film were found to be pH sensitive. The ceramic and SAM coatings were characterized by a variety of analytical techniques. A pathway for the formation of the ceramic coating is also discussed. [PUBLICATION ABSTRACT]</abstract><cop>New York, NY</cop><pub>Institute of Electrical and Electronics Engineers</pub><doi>10.1007/s11664-005-0062-0</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2005-05, Vol.34 (5), p.534-540 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_miscellaneous_29478209 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied sciences Ceramics Cross-disciplinary physics: materials science rheology Electronics Exact sciences and technology Liquid phase epitaxy deposition from liquid phases (melts, solutions, and surface layers on liquids) Materials science Methods of deposition of films and coatings film growth and epitaxy Micro- and nanoelectromechanical devices (mems/nems) Microelectromechanical systems Physics Protective coatings Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Silicon Temperature Zirconium |
title | Toward a better understanding of synthesis and processing of ceramic/self-assembled monolayer bilayer coatings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20a%20better%20understanding%20of%20synthesis%20and%20processing%20of%20ceramic/self-assembled%20monolayer%20bilayer%20coatings&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=SALAMI,%20T.%20O&rft.date=2005-05-01&rft.volume=34&rft.issue=5&rft.spage=534&rft.epage=540&rft.pages=534-540&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-005-0062-0&rft_dat=%3Cproquest_cross%3E29478209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204914144&rft_id=info:pmid/&rfr_iscdi=true |