Toward a better understanding of synthesis and processing of ceramic/self-assembled monolayer bilayer coatings

Ceramic/self-assembled monolayer (SAM) bilayer coatings can provide adequate protection for silicon devices, or act as a multipurpose coating for other electronic applications, due to synergistic effects by forming a hybrid coating structure. The organic SAM layer acts as a "template" for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2005-05, Vol.34 (5), p.534-540
Hauptverfasser: SALAMI, T. O, YANG, Q, CHITRE, K, ZAREMBO, S, CHO, J, OLIVER, S. R. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 540
container_issue 5
container_start_page 534
container_title Journal of electronic materials
container_volume 34
creator SALAMI, T. O
YANG, Q
CHITRE, K
ZAREMBO, S
CHO, J
OLIVER, S. R. J
description Ceramic/self-assembled monolayer (SAM) bilayer coatings can provide adequate protection for silicon devices, or act as a multipurpose coating for other electronic applications, due to synergistic effects by forming a hybrid coating structure. The organic SAM layer acts as a "template" for the growth of the ceramic layer, while the ceramic layer can provide protection from environmental and mechanical impact. Low-temperature solution-based deposition techniques, namely, an in-situ solution method (biomimetic) and a hydrothermal method, have been employed in this study. Specifically, phosphonate-based (diethyl phosphatoethyl triethoxy silane) SAMs were used as a template to generate a zirconia ceramic layer at low temperatures. Other organic templates such as -SiCl^sub 3^-, -OH-, -HSO^sub 3^-, or -CH^sub 3^-terminated SAMs were also examined. The reactions to grow the ceramic film were found to be pH sensitive. The ceramic and SAM coatings were characterized by a variety of analytical techniques. A pathway for the formation of the ceramic coating is also discussed. [PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s11664-005-0062-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29478209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29478209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-4d36de24eafe39c2452357c0306c02ced8eefddbac0a0346f730610b618d50f23</originalsourceid><addsrcrecordid>eNpdUE1r3DAQFaWFbNP8gNxMIbk5mZFkrfcYQvMBgV5SyE3I0qh1sKVU46Xsv6-WXQjkMDyY98HjCXGOcIUA62tGNEa3AF09I1v4JFbYadVib14-ixUog20nVXcivjK_AmCHPa5Ees7_XAmNawZaFirNNgUqvLgUxvS7ybHhXVr-EI_c1F_zVrIn5iPnqbh59NdMU2wdM83DRKGZc8qT29W0YTygz26pHv4mvkQ3MZ0d8VT8uvvxfPvQPv28f7y9eWq9UmppdVAmkNTkIqmNl3rffO1BgfEgPYWeKIYwOA8OlDZxXRmEwWAfOohSnYrLQ27t-3dLvNh5ZE_T5BLlLVu50etewqYKv38QvuZtSbWblaA3qFHrKsKDyJfMXCjatzLOruwsgt3Pbw_z2zq_3c9voXoujsGOvZticcmP_G40fYcdoPoP08-Gww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204914144</pqid></control><display><type>article</type><title>Toward a better understanding of synthesis and processing of ceramic/self-assembled monolayer bilayer coatings</title><source>SpringerLink Journals - AutoHoldings</source><creator>SALAMI, T. O ; YANG, Q ; CHITRE, K ; ZAREMBO, S ; CHO, J ; OLIVER, S. R. J</creator><creatorcontrib>SALAMI, T. O ; YANG, Q ; CHITRE, K ; ZAREMBO, S ; CHO, J ; OLIVER, S. R. J</creatorcontrib><description>Ceramic/self-assembled monolayer (SAM) bilayer coatings can provide adequate protection for silicon devices, or act as a multipurpose coating for other electronic applications, due to synergistic effects by forming a hybrid coating structure. The organic SAM layer acts as a "template" for the growth of the ceramic layer, while the ceramic layer can provide protection from environmental and mechanical impact. Low-temperature solution-based deposition techniques, namely, an in-situ solution method (biomimetic) and a hydrothermal method, have been employed in this study. Specifically, phosphonate-based (diethyl phosphatoethyl triethoxy silane) SAMs were used as a template to generate a zirconia ceramic layer at low temperatures. Other organic templates such as -SiCl^sub 3^-, -OH-, -HSO^sub 3^-, or -CH^sub 3^-terminated SAMs were also examined. The reactions to grow the ceramic film were found to be pH sensitive. The ceramic and SAM coatings were characterized by a variety of analytical techniques. A pathway for the formation of the ceramic coating is also discussed. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-005-0062-0</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>New York, NY: Institute of Electrical and Electronics Engineers</publisher><subject>Applied sciences ; Ceramics ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Exact sciences and technology ; Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids) ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Micro- and nanoelectromechanical devices (mems/nems) ; Microelectromechanical systems ; Physics ; Protective coatings ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Silicon ; Temperature ; Zirconium</subject><ispartof>Journal of electronic materials, 2005-05, Vol.34 (5), p.534-540</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright Minerals, Metals &amp; Materials Society May 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-4d36de24eafe39c2452357c0306c02ced8eefddbac0a0346f730610b618d50f23</citedby><cites>FETCH-LOGICAL-c333t-4d36de24eafe39c2452357c0306c02ced8eefddbac0a0346f730610b618d50f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23929,23930,25139,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16851501$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SALAMI, T. O</creatorcontrib><creatorcontrib>YANG, Q</creatorcontrib><creatorcontrib>CHITRE, K</creatorcontrib><creatorcontrib>ZAREMBO, S</creatorcontrib><creatorcontrib>CHO, J</creatorcontrib><creatorcontrib>OLIVER, S. R. J</creatorcontrib><title>Toward a better understanding of synthesis and processing of ceramic/self-assembled monolayer bilayer coatings</title><title>Journal of electronic materials</title><description>Ceramic/self-assembled monolayer (SAM) bilayer coatings can provide adequate protection for silicon devices, or act as a multipurpose coating for other electronic applications, due to synergistic effects by forming a hybrid coating structure. The organic SAM layer acts as a "template" for the growth of the ceramic layer, while the ceramic layer can provide protection from environmental and mechanical impact. Low-temperature solution-based deposition techniques, namely, an in-situ solution method (biomimetic) and a hydrothermal method, have been employed in this study. Specifically, phosphonate-based (diethyl phosphatoethyl triethoxy silane) SAMs were used as a template to generate a zirconia ceramic layer at low temperatures. Other organic templates such as -SiCl^sub 3^-, -OH-, -HSO^sub 3^-, or -CH^sub 3^-terminated SAMs were also examined. The reactions to grow the ceramic film were found to be pH sensitive. The ceramic and SAM coatings were characterized by a variety of analytical techniques. A pathway for the formation of the ceramic coating is also discussed. [PUBLICATION ABSTRACT]</description><subject>Applied sciences</subject><subject>Ceramics</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Micro- and nanoelectromechanical devices (mems/nems)</subject><subject>Microelectromechanical systems</subject><subject>Physics</subject><subject>Protective coatings</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Silicon</subject><subject>Temperature</subject><subject>Zirconium</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdUE1r3DAQFaWFbNP8gNxMIbk5mZFkrfcYQvMBgV5SyE3I0qh1sKVU46Xsv6-WXQjkMDyY98HjCXGOcIUA62tGNEa3AF09I1v4JFbYadVib14-ixUog20nVXcivjK_AmCHPa5Ees7_XAmNawZaFirNNgUqvLgUxvS7ybHhXVr-EI_c1F_zVrIn5iPnqbh59NdMU2wdM83DRKGZc8qT29W0YTygz26pHv4mvkQ3MZ0d8VT8uvvxfPvQPv28f7y9eWq9UmppdVAmkNTkIqmNl3rffO1BgfEgPYWeKIYwOA8OlDZxXRmEwWAfOohSnYrLQ27t-3dLvNh5ZE_T5BLlLVu50etewqYKv38QvuZtSbWblaA3qFHrKsKDyJfMXCjatzLOruwsgt3Pbw_z2zq_3c9voXoujsGOvZticcmP_G40fYcdoPoP08-Gww</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>SALAMI, T. O</creator><creator>YANG, Q</creator><creator>CHITRE, K</creator><creator>ZAREMBO, S</creator><creator>CHO, J</creator><creator>OLIVER, S. R. J</creator><general>Institute of Electrical and Electronics Engineers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20050501</creationdate><title>Toward a better understanding of synthesis and processing of ceramic/self-assembled monolayer bilayer coatings</title><author>SALAMI, T. O ; YANG, Q ; CHITRE, K ; ZAREMBO, S ; CHO, J ; OLIVER, S. R. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-4d36de24eafe39c2452357c0306c02ced8eefddbac0a0346f730610b618d50f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Ceramics</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Liquid phase epitaxy; deposition from liquid phases (melts, solutions, and surface layers on liquids)</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Micro- and nanoelectromechanical devices (mems/nems)</topic><topic>Microelectromechanical systems</topic><topic>Physics</topic><topic>Protective coatings</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Silicon</topic><topic>Temperature</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SALAMI, T. O</creatorcontrib><creatorcontrib>YANG, Q</creatorcontrib><creatorcontrib>CHITRE, K</creatorcontrib><creatorcontrib>ZAREMBO, S</creatorcontrib><creatorcontrib>CHO, J</creatorcontrib><creatorcontrib>OLIVER, S. R. J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SALAMI, T. O</au><au>YANG, Q</au><au>CHITRE, K</au><au>ZAREMBO, S</au><au>CHO, J</au><au>OLIVER, S. R. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward a better understanding of synthesis and processing of ceramic/self-assembled monolayer bilayer coatings</atitle><jtitle>Journal of electronic materials</jtitle><date>2005-05-01</date><risdate>2005</risdate><volume>34</volume><issue>5</issue><spage>534</spage><epage>540</epage><pages>534-540</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Ceramic/self-assembled monolayer (SAM) bilayer coatings can provide adequate protection for silicon devices, or act as a multipurpose coating for other electronic applications, due to synergistic effects by forming a hybrid coating structure. The organic SAM layer acts as a "template" for the growth of the ceramic layer, while the ceramic layer can provide protection from environmental and mechanical impact. Low-temperature solution-based deposition techniques, namely, an in-situ solution method (biomimetic) and a hydrothermal method, have been employed in this study. Specifically, phosphonate-based (diethyl phosphatoethyl triethoxy silane) SAMs were used as a template to generate a zirconia ceramic layer at low temperatures. Other organic templates such as -SiCl^sub 3^-, -OH-, -HSO^sub 3^-, or -CH^sub 3^-terminated SAMs were also examined. The reactions to grow the ceramic film were found to be pH sensitive. The ceramic and SAM coatings were characterized by a variety of analytical techniques. A pathway for the formation of the ceramic coating is also discussed. [PUBLICATION ABSTRACT]</abstract><cop>New York, NY</cop><pub>Institute of Electrical and Electronics Engineers</pub><doi>10.1007/s11664-005-0062-0</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2005-05, Vol.34 (5), p.534-540
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_miscellaneous_29478209
source SpringerLink Journals - AutoHoldings
subjects Applied sciences
Ceramics
Cross-disciplinary physics: materials science
rheology
Electronics
Exact sciences and technology
Liquid phase epitaxy
deposition from liquid phases (melts, solutions, and surface layers on liquids)
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Micro- and nanoelectromechanical devices (mems/nems)
Microelectromechanical systems
Physics
Protective coatings
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Silicon
Temperature
Zirconium
title Toward a better understanding of synthesis and processing of ceramic/self-assembled monolayer bilayer coatings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A09%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20a%20better%20understanding%20of%20synthesis%20and%20processing%20of%20ceramic/self-assembled%20monolayer%20bilayer%20coatings&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=SALAMI,%20T.%20O&rft.date=2005-05-01&rft.volume=34&rft.issue=5&rft.spage=534&rft.epage=540&rft.pages=534-540&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-005-0062-0&rft_dat=%3Cproquest_cross%3E29478209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204914144&rft_id=info:pmid/&rfr_iscdi=true