A phase-field model for heat treatment applications in Ni-based alloys
This work details our attempts towards developing a phase-field model into an engineering tool that can be used to simulate microstructural evolution under a prescribed heat treatment procedure. Most previous work is limited to isothermal conditions. We performed isothermal simulations for a few Ni–...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2006-05, Vol.54 (8), p.2087-2099 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2099 |
---|---|
container_issue | 8 |
container_start_page | 2087 |
container_title | Acta materialia |
container_volume | 54 |
creator | Wen, Y.H. Wang, B. Simmons, J.P. Wang, Y. |
description | This work details our attempts towards developing a phase-field model into an engineering tool that can be used to simulate microstructural evolution under a prescribed heat treatment procedure. Most previous work is limited to isothermal conditions. We performed isothermal simulations for a few Ni–Al alloys at various temperatures. Growth kinetics and particle number density evolution with time were documented and compared with experimental observations. The temperature dependence of phase-field input parameters was described for modeling realistic heat treatments. In the selection of gradient coefficient constants we found it difficult to fit the interfacial energy and anti-phase domain boundary energy simultaneously without causing microstructure instability in the simulations. In comparison with experimentally observed kinetics, we found that the
γ/
γ′ interfacial energy has to be around 70
mJ/m
2 at 550
°C to achieve reasonable agreement in mean particle size evolution, although a wide spread of this energy was reported by fitting to experimentally measured coarsening kinetics. We proposed a fast calibration procedure of the phase-field model by two isothermal experiments and this concept will be further tested in more complex alloys. |
doi_str_mv | 10.1016/j.actamat.2006.01.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29474911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645406000644</els_id><sourcerecordid>29474911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-6ff0ec21fa22229b8a26481d043c4025895935e41a90aaccf9ae4db7017aa8b13</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhgdRsFYfQchGcTNjbnNbiYhVoehG1-E0c0JTMheTVPDtTWnBnZ5FThbf_x_4suyS0YJRVt1uCtAReogFp7QqKCsoZUfZjDW1yLksxXH6i7LNK1nK0-wshE0CeC3pLFvck2kNAXNj0XWkHzt0xIyerBEiiT69PQ6RwDQ5qyHacQjEDuTV5qsU6wg4N36H8-zEgAt4cdjz7GPx-P7wnC_fnl4e7pe5llTEvDKGoubMAE_TrhrglWxYR6VIAC-btmxFiZJBSwG0Ni2g7FY1ZTVAs2Jinl3veyc_fm4xRNXboNE5GHDcBsVbWcuW7cCbP0FGG87qWooyoeUe1X4MwaNRk7c9-O8EqZ1gtVEHwWonWFGmkr-UuzqcgKDBGQ-DtuE3nNprQXf9d3sOk5gvi14FbXHQ2FmPOqputP9c-gEtHJJX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082177435</pqid></control><display><type>article</type><title>A phase-field model for heat treatment applications in Ni-based alloys</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Wen, Y.H. ; Wang, B. ; Simmons, J.P. ; Wang, Y.</creator><creatorcontrib>Wen, Y.H. ; Wang, B. ; Simmons, J.P. ; Wang, Y.</creatorcontrib><description>This work details our attempts towards developing a phase-field model into an engineering tool that can be used to simulate microstructural evolution under a prescribed heat treatment procedure. Most previous work is limited to isothermal conditions. We performed isothermal simulations for a few Ni–Al alloys at various temperatures. Growth kinetics and particle number density evolution with time were documented and compared with experimental observations. The temperature dependence of phase-field input parameters was described for modeling realistic heat treatments. In the selection of gradient coefficient constants we found it difficult to fit the interfacial energy and anti-phase domain boundary energy simultaneously without causing microstructure instability in the simulations. In comparison with experimentally observed kinetics, we found that the
γ/
γ′ interfacial energy has to be around 70
mJ/m
2 at 550
°C to achieve reasonable agreement in mean particle size evolution, although a wide spread of this energy was reported by fitting to experimentally measured coarsening kinetics. We proposed a fast calibration procedure of the phase-field model by two isothermal experiments and this concept will be further tested in more complex alloys.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2006.01.001</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aging ; Alloys ; Applied sciences ; Computer simulation ; Density ; Engineering model ; Evolution ; Exact sciences and technology ; Heat treatment ; Intermetallic compounds ; Mathematical models ; Metals. Metallurgy ; Microstructure ; Nickel alloys ; Nickel base alloys ; Phase-field models ; Precipitation</subject><ispartof>Acta materialia, 2006-05, Vol.54 (8), p.2087-2099</ispartof><rights>2006 Acta Materialia Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-6ff0ec21fa22229b8a26481d043c4025895935e41a90aaccf9ae4db7017aa8b13</citedby><cites>FETCH-LOGICAL-c403t-6ff0ec21fa22229b8a26481d043c4025895935e41a90aaccf9ae4db7017aa8b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2006.01.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17747305$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wen, Y.H.</creatorcontrib><creatorcontrib>Wang, B.</creatorcontrib><creatorcontrib>Simmons, J.P.</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><title>A phase-field model for heat treatment applications in Ni-based alloys</title><title>Acta materialia</title><description>This work details our attempts towards developing a phase-field model into an engineering tool that can be used to simulate microstructural evolution under a prescribed heat treatment procedure. Most previous work is limited to isothermal conditions. We performed isothermal simulations for a few Ni–Al alloys at various temperatures. Growth kinetics and particle number density evolution with time were documented and compared with experimental observations. The temperature dependence of phase-field input parameters was described for modeling realistic heat treatments. In the selection of gradient coefficient constants we found it difficult to fit the interfacial energy and anti-phase domain boundary energy simultaneously without causing microstructure instability in the simulations. In comparison with experimentally observed kinetics, we found that the
γ/
γ′ interfacial energy has to be around 70
mJ/m
2 at 550
°C to achieve reasonable agreement in mean particle size evolution, although a wide spread of this energy was reported by fitting to experimentally measured coarsening kinetics. We proposed a fast calibration procedure of the phase-field model by two isothermal experiments and this concept will be further tested in more complex alloys.</description><subject>Aging</subject><subject>Alloys</subject><subject>Applied sciences</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Engineering model</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Heat treatment</subject><subject>Intermetallic compounds</subject><subject>Mathematical models</subject><subject>Metals. Metallurgy</subject><subject>Microstructure</subject><subject>Nickel alloys</subject><subject>Nickel base alloys</subject><subject>Phase-field models</subject><subject>Precipitation</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhgdRsFYfQchGcTNjbnNbiYhVoehG1-E0c0JTMheTVPDtTWnBnZ5FThbf_x_4suyS0YJRVt1uCtAReogFp7QqKCsoZUfZjDW1yLksxXH6i7LNK1nK0-wshE0CeC3pLFvck2kNAXNj0XWkHzt0xIyerBEiiT69PQ6RwDQ5qyHacQjEDuTV5qsU6wg4N36H8-zEgAt4cdjz7GPx-P7wnC_fnl4e7pe5llTEvDKGoubMAE_TrhrglWxYR6VIAC-btmxFiZJBSwG0Ni2g7FY1ZTVAs2Jinl3veyc_fm4xRNXboNE5GHDcBsVbWcuW7cCbP0FGG87qWooyoeUe1X4MwaNRk7c9-O8EqZ1gtVEHwWonWFGmkr-UuzqcgKDBGQ-DtuE3nNprQXf9d3sOk5gvi14FbXHQ2FmPOqputP9c-gEtHJJX</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Wen, Y.H.</creator><creator>Wang, B.</creator><creator>Simmons, J.P.</creator><creator>Wang, Y.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20060501</creationdate><title>A phase-field model for heat treatment applications in Ni-based alloys</title><author>Wen, Y.H. ; Wang, B. ; Simmons, J.P. ; Wang, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-6ff0ec21fa22229b8a26481d043c4025895935e41a90aaccf9ae4db7017aa8b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aging</topic><topic>Alloys</topic><topic>Applied sciences</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Engineering model</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Heat treatment</topic><topic>Intermetallic compounds</topic><topic>Mathematical models</topic><topic>Metals. Metallurgy</topic><topic>Microstructure</topic><topic>Nickel alloys</topic><topic>Nickel base alloys</topic><topic>Phase-field models</topic><topic>Precipitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Y.H.</creatorcontrib><creatorcontrib>Wang, B.</creatorcontrib><creatorcontrib>Simmons, J.P.</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Y.H.</au><au>Wang, B.</au><au>Simmons, J.P.</au><au>Wang, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A phase-field model for heat treatment applications in Ni-based alloys</atitle><jtitle>Acta materialia</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>54</volume><issue>8</issue><spage>2087</spage><epage>2099</epage><pages>2087-2099</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>This work details our attempts towards developing a phase-field model into an engineering tool that can be used to simulate microstructural evolution under a prescribed heat treatment procedure. Most previous work is limited to isothermal conditions. We performed isothermal simulations for a few Ni–Al alloys at various temperatures. Growth kinetics and particle number density evolution with time were documented and compared with experimental observations. The temperature dependence of phase-field input parameters was described for modeling realistic heat treatments. In the selection of gradient coefficient constants we found it difficult to fit the interfacial energy and anti-phase domain boundary energy simultaneously without causing microstructure instability in the simulations. In comparison with experimentally observed kinetics, we found that the
γ/
γ′ interfacial energy has to be around 70
mJ/m
2 at 550
°C to achieve reasonable agreement in mean particle size evolution, although a wide spread of this energy was reported by fitting to experimentally measured coarsening kinetics. We proposed a fast calibration procedure of the phase-field model by two isothermal experiments and this concept will be further tested in more complex alloys.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2006.01.001</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2006-05, Vol.54 (8), p.2087-2099 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_proquest_miscellaneous_29474911 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Aging Alloys Applied sciences Computer simulation Density Engineering model Evolution Exact sciences and technology Heat treatment Intermetallic compounds Mathematical models Metals. Metallurgy Microstructure Nickel alloys Nickel base alloys Phase-field models Precipitation |
title | A phase-field model for heat treatment applications in Ni-based alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20phase-field%20model%20for%20heat%20treatment%20applications%20in%20Ni-based%20alloys&rft.jtitle=Acta%20materialia&rft.au=Wen,%20Y.H.&rft.date=2006-05-01&rft.volume=54&rft.issue=8&rft.spage=2087&rft.epage=2099&rft.pages=2087-2099&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2006.01.001&rft_dat=%3Cproquest_cross%3E29474911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082177435&rft_id=info:pmid/&rft_els_id=S1359645406000644&rfr_iscdi=true |