Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing
This paper describes a novel numerical algorithm for simulating interfacial dynamics of non-Newtonian fluids. The interface between two immiscible fluids is treated as a thin mixing layer across which physical properties vary steeply but continuously. The property and evolution of the interfacial la...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2006-11, Vol.219 (1), p.47-67 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 67 |
---|---|
container_issue | 1 |
container_start_page | 47 |
container_title | Journal of computational physics |
container_volume | 219 |
creator | Yue, Pengtao Zhou, Chunfeng Feng, James J. Ollivier-Gooch, Carl F. Hu, Howard H. |
description | This paper describes a novel numerical algorithm for simulating interfacial dynamics of non-Newtonian fluids. The interface between two immiscible fluids is treated as a thin mixing layer across which physical properties vary steeply but continuously. The property and evolution of the interfacial layer is governed by a phase-field variable ϕ that obeys a Cahn–Hilliard type of convection-diffusion equation. This circumvents the task of directly tracking the interface, and produces the correct interfacial tension from the free energy stored in the mixing layer. Viscoelasticity and other types of constitutive equations can be incorporated easily into the variational phase-field framework. The greatest challenge of this approach is in resolving the sharp gradients at the interface. This is achieved by using an efficient adaptive meshing scheme governed by the phase-field variable. The finite-element scheme easily accommodates complex flow geometry and the adaptive meshing makes it possible to simulate large-scale two-phase systems of complex fluids. In two-dimensional and axisymmetric three-dimensional implementations, the numerical toolkit is applied here to drop deformation in shear and elongational flows, rise of drops and retraction of drops and torii. Some of these solutions serve as validation of the method and illustrate its key features, while others explore novel physics of viscoelasticity in the deformation and evolution of interfaces. |
doi_str_mv | 10.1016/j.jcp.2006.03.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29468766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999106001392</els_id><sourcerecordid>29468766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-3da026b32be099eb8b60ecc70700a73eeb8b547179ded23e12c024470a0115513</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhSMEEkvLD-DmC4hLwtjOOrE4oYoWpEpwgLPldSbsrJxk8Thb9d_j1Vbi1tNIT997M5pXVe8kNBKk-XRoDuHYKADTgG6K8qLaSLBQq06al9UGQMnaWitfV2-YDwDQb9t-U6Wfe89Yj4RxEEzTGn2mZWaxjILmjGn0gXwUw-PsJwpcRHEiDgtGz5mCGONKA4uVaf4jRpopo8CIE86ZxQPlvfCDP2Y6oZiQ94W6rl6NPjK-fZpX1e_br79uvtX3P-6-33y5r4O2Mtd68KDMTqsdgrW463cGMIQOOgDfaTwr27aTnR1wUBqlCqDatgMPUm63Ul9VHy65x7T8XZGzm8rhGKOfcVnZKduavjOmgB-fBSX0SvbWQl9QeUFDWpgTju6YaPLpsUDuXIQ7uFKEOxfhQLuiFM_7p3jPwccx-TkQ_zf2utW9sYX7fOGwPOVEmBwHwjngQAlDdsNCz2z5B50Tnyc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082189908</pqid></control><display><type>article</type><title>Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing</title><source>Access via ScienceDirect (Elsevier)</source><creator>Yue, Pengtao ; Zhou, Chunfeng ; Feng, James J. ; Ollivier-Gooch, Carl F. ; Hu, Howard H.</creator><creatorcontrib>Yue, Pengtao ; Zhou, Chunfeng ; Feng, James J. ; Ollivier-Gooch, Carl F. ; Hu, Howard H.</creatorcontrib><description>This paper describes a novel numerical algorithm for simulating interfacial dynamics of non-Newtonian fluids. The interface between two immiscible fluids is treated as a thin mixing layer across which physical properties vary steeply but continuously. The property and evolution of the interfacial layer is governed by a phase-field variable ϕ that obeys a Cahn–Hilliard type of convection-diffusion equation. This circumvents the task of directly tracking the interface, and produces the correct interfacial tension from the free energy stored in the mixing layer. Viscoelasticity and other types of constitutive equations can be incorporated easily into the variational phase-field framework. The greatest challenge of this approach is in resolving the sharp gradients at the interface. This is achieved by using an efficient adaptive meshing scheme governed by the phase-field variable. The finite-element scheme easily accommodates complex flow geometry and the adaptive meshing makes it possible to simulate large-scale two-phase systems of complex fluids. In two-dimensional and axisymmetric three-dimensional implementations, the numerical toolkit is applied here to drop deformation in shear and elongational flows, rise of drops and retraction of drops and torii. Some of these solutions serve as validation of the method and illustrate its key features, while others explore novel physics of viscoelasticity in the deformation and evolution of interfaces.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2006.03.016</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Computational techniques ; Computer simulation ; Diffuse-interface method ; Drop coalescence ; Drop deformation ; Drop retraction ; Dynamics ; Evolution ; Exact sciences and technology ; Fluid flow ; Interfacial tension ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Meshing ; Moving boundary problem ; Non-Newtonian fluid mechanics ; Physics ; Two-phase flows ; Viscoelasticity</subject><ispartof>Journal of computational physics, 2006-11, Vol.219 (1), p.47-67</ispartof><rights>2006 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-3da026b32be099eb8b60ecc70700a73eeb8b547179ded23e12c024470a0115513</citedby><cites>FETCH-LOGICAL-c391t-3da026b32be099eb8b60ecc70700a73eeb8b547179ded23e12c024470a0115513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2006.03.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18343869$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yue, Pengtao</creatorcontrib><creatorcontrib>Zhou, Chunfeng</creatorcontrib><creatorcontrib>Feng, James J.</creatorcontrib><creatorcontrib>Ollivier-Gooch, Carl F.</creatorcontrib><creatorcontrib>Hu, Howard H.</creatorcontrib><title>Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing</title><title>Journal of computational physics</title><description>This paper describes a novel numerical algorithm for simulating interfacial dynamics of non-Newtonian fluids. The interface between two immiscible fluids is treated as a thin mixing layer across which physical properties vary steeply but continuously. The property and evolution of the interfacial layer is governed by a phase-field variable ϕ that obeys a Cahn–Hilliard type of convection-diffusion equation. This circumvents the task of directly tracking the interface, and produces the correct interfacial tension from the free energy stored in the mixing layer. Viscoelasticity and other types of constitutive equations can be incorporated easily into the variational phase-field framework. The greatest challenge of this approach is in resolving the sharp gradients at the interface. This is achieved by using an efficient adaptive meshing scheme governed by the phase-field variable. The finite-element scheme easily accommodates complex flow geometry and the adaptive meshing makes it possible to simulate large-scale two-phase systems of complex fluids. In two-dimensional and axisymmetric three-dimensional implementations, the numerical toolkit is applied here to drop deformation in shear and elongational flows, rise of drops and retraction of drops and torii. Some of these solutions serve as validation of the method and illustrate its key features, while others explore novel physics of viscoelasticity in the deformation and evolution of interfaces.</description><subject>Computational techniques</subject><subject>Computer simulation</subject><subject>Diffuse-interface method</subject><subject>Drop coalescence</subject><subject>Drop deformation</subject><subject>Drop retraction</subject><subject>Dynamics</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Interfacial tension</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Meshing</subject><subject>Moving boundary problem</subject><subject>Non-Newtonian fluid mechanics</subject><subject>Physics</subject><subject>Two-phase flows</subject><subject>Viscoelasticity</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhSMEEkvLD-DmC4hLwtjOOrE4oYoWpEpwgLPldSbsrJxk8Thb9d_j1Vbi1tNIT997M5pXVe8kNBKk-XRoDuHYKADTgG6K8qLaSLBQq06al9UGQMnaWitfV2-YDwDQb9t-U6Wfe89Yj4RxEEzTGn2mZWaxjILmjGn0gXwUw-PsJwpcRHEiDgtGz5mCGONKA4uVaf4jRpopo8CIE86ZxQPlvfCDP2Y6oZiQ94W6rl6NPjK-fZpX1e_br79uvtX3P-6-33y5r4O2Mtd68KDMTqsdgrW463cGMIQOOgDfaTwr27aTnR1wUBqlCqDatgMPUm63Ul9VHy65x7T8XZGzm8rhGKOfcVnZKduavjOmgB-fBSX0SvbWQl9QeUFDWpgTju6YaPLpsUDuXIQ7uFKEOxfhQLuiFM_7p3jPwccx-TkQ_zf2utW9sYX7fOGwPOVEmBwHwjngQAlDdsNCz2z5B50Tnyc</recordid><startdate>20061120</startdate><enddate>20061120</enddate><creator>Yue, Pengtao</creator><creator>Zhou, Chunfeng</creator><creator>Feng, James J.</creator><creator>Ollivier-Gooch, Carl F.</creator><creator>Hu, Howard H.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20061120</creationdate><title>Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing</title><author>Yue, Pengtao ; Zhou, Chunfeng ; Feng, James J. ; Ollivier-Gooch, Carl F. ; Hu, Howard H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-3da026b32be099eb8b60ecc70700a73eeb8b547179ded23e12c024470a0115513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computational techniques</topic><topic>Computer simulation</topic><topic>Diffuse-interface method</topic><topic>Drop coalescence</topic><topic>Drop deformation</topic><topic>Drop retraction</topic><topic>Dynamics</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Interfacial tension</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Meshing</topic><topic>Moving boundary problem</topic><topic>Non-Newtonian fluid mechanics</topic><topic>Physics</topic><topic>Two-phase flows</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Pengtao</creatorcontrib><creatorcontrib>Zhou, Chunfeng</creatorcontrib><creatorcontrib>Feng, James J.</creatorcontrib><creatorcontrib>Ollivier-Gooch, Carl F.</creatorcontrib><creatorcontrib>Hu, Howard H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue, Pengtao</au><au>Zhou, Chunfeng</au><au>Feng, James J.</au><au>Ollivier-Gooch, Carl F.</au><au>Hu, Howard H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing</atitle><jtitle>Journal of computational physics</jtitle><date>2006-11-20</date><risdate>2006</risdate><volume>219</volume><issue>1</issue><spage>47</spage><epage>67</epage><pages>47-67</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>This paper describes a novel numerical algorithm for simulating interfacial dynamics of non-Newtonian fluids. The interface between two immiscible fluids is treated as a thin mixing layer across which physical properties vary steeply but continuously. The property and evolution of the interfacial layer is governed by a phase-field variable ϕ that obeys a Cahn–Hilliard type of convection-diffusion equation. This circumvents the task of directly tracking the interface, and produces the correct interfacial tension from the free energy stored in the mixing layer. Viscoelasticity and other types of constitutive equations can be incorporated easily into the variational phase-field framework. The greatest challenge of this approach is in resolving the sharp gradients at the interface. This is achieved by using an efficient adaptive meshing scheme governed by the phase-field variable. The finite-element scheme easily accommodates complex flow geometry and the adaptive meshing makes it possible to simulate large-scale two-phase systems of complex fluids. In two-dimensional and axisymmetric three-dimensional implementations, the numerical toolkit is applied here to drop deformation in shear and elongational flows, rise of drops and retraction of drops and torii. Some of these solutions serve as validation of the method and illustrate its key features, while others explore novel physics of viscoelasticity in the deformation and evolution of interfaces.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2006.03.016</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2006-11, Vol.219 (1), p.47-67 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_29468766 |
source | Access via ScienceDirect (Elsevier) |
subjects | Computational techniques Computer simulation Diffuse-interface method Drop coalescence Drop deformation Drop retraction Dynamics Evolution Exact sciences and technology Fluid flow Interfacial tension Mathematical analysis Mathematical methods in physics Mathematical models Meshing Moving boundary problem Non-Newtonian fluid mechanics Physics Two-phase flows Viscoelasticity |
title | Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase-field%20simulations%20of%20interfacial%20dynamics%20in%20viscoelastic%20fluids%20using%20finite%20elements%20with%20adaptive%20meshing&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Yue,%20Pengtao&rft.date=2006-11-20&rft.volume=219&rft.issue=1&rft.spage=47&rft.epage=67&rft.pages=47-67&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2006.03.016&rft_dat=%3Cproquest_cross%3E29468766%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082189908&rft_id=info:pmid/&rft_els_id=S0021999106001392&rfr_iscdi=true |