Nonlinear positional formulation for space truss analysis

This paper presents a new geometric nonlinear formulation for static problems involving space trusses. Based on the finite element method (FEM), the proposed formulation uses nodal positions rather than nodal displacements to describe the problem. The strain is determined directly from the proposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Finite elements in analysis and design 2006-08, Vol.42 (12), p.1079-1086
Hauptverfasser: Greco, M., Gesualdo, F.A.R., Venturini, W.S., Coda, H.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1086
container_issue 12
container_start_page 1079
container_title Finite elements in analysis and design
container_volume 42
creator Greco, M.
Gesualdo, F.A.R.
Venturini, W.S.
Coda, H.B.
description This paper presents a new geometric nonlinear formulation for static problems involving space trusses. Based on the finite element method (FEM), the proposed formulation uses nodal positions rather than nodal displacements to describe the problem. The strain is determined directly from the proposed position concept, using a Cartesian coordinate system fixed in space. Bilinear constitutive hardening relations are considered here to model the elastoplastic effects, but any other constitutive model can be used. The proposed formulation is simple and yields good results, as shown in the example section. Four examples are presented here to validate the formulation.
doi_str_mv 10.1016/j.finel.2006.04.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29461175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168874X06000722</els_id><sourcerecordid>29461175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-57c8adc3e01c71444a75c10975bd8bdbf426cdee01e0a2820ef7219044644d7d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Ai-9KF5aJ9m0SQ8eZPELFr0oeAvZJIUs2bZmWsF_b-oueNvTzDDPOwMPIZcUCgq0ut0UjW9dKBhAVQAvAMQRmVEpWF7VrDwms0TJXAr-eUrOEDcAULKKz0j92rUhZXXM-g794LtWh6zp4nYMepqmPsNeG5cNcUTMdAJ-0OM5OWl0QHexr3Py8fjwvnzOV29PL8v7VW44Z0NeCiO1NQsH1AjKOdeiNBRqUa6tXNt1w1llrEtrB5pJBq4RjNbAecW5FXYxJ9e7u33svkaHg9p6NC4E3bpuRMVqXlEqygTeHAQpSEYlk7RK6GKHmtghRteoPvqtjj8JUpNRtVF_RtVkVAFXyWhKXe0faDQ6NFG3xuN_VNS05IIm7m7HuaTl27uo0HjXGmd9dGZQtvMH__wCV6-Mug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082182816</pqid></control><display><type>article</type><title>Nonlinear positional formulation for space truss analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Greco, M. ; Gesualdo, F.A.R. ; Venturini, W.S. ; Coda, H.B.</creator><creatorcontrib>Greco, M. ; Gesualdo, F.A.R. ; Venturini, W.S. ; Coda, H.B.</creatorcontrib><description>This paper presents a new geometric nonlinear formulation for static problems involving space trusses. Based on the finite element method (FEM), the proposed formulation uses nodal positions rather than nodal displacements to describe the problem. The strain is determined directly from the proposed position concept, using a Cartesian coordinate system fixed in space. Bilinear constitutive hardening relations are considered here to model the elastoplastic effects, but any other constitutive model can be used. The proposed formulation is simple and yields good results, as shown in the example section. Four examples are presented here to validate the formulation.</description><identifier>ISSN: 0168-874X</identifier><identifier>EISSN: 1872-6925</identifier><identifier>DOI: 10.1016/j.finel.2006.04.007</identifier><identifier>CODEN: FEADEU</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Cartesian coordinate system ; Computational techniques ; Design engineering ; Elastoplasticity ; Exact sciences and technology ; FEM ; Finite element method ; Finite-element and galerkin methods ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Nonlinear analysis ; Nonlinearity ; Physics ; Solid mechanics ; Space trusses ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Trusses</subject><ispartof>Finite elements in analysis and design, 2006-08, Vol.42 (12), p.1079-1086</ispartof><rights>2006 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-57c8adc3e01c71444a75c10975bd8bdbf426cdee01e0a2820ef7219044644d7d3</citedby><cites>FETCH-LOGICAL-c442t-57c8adc3e01c71444a75c10975bd8bdbf426cdee01e0a2820ef7219044644d7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168874X06000722$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17915471$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Greco, M.</creatorcontrib><creatorcontrib>Gesualdo, F.A.R.</creatorcontrib><creatorcontrib>Venturini, W.S.</creatorcontrib><creatorcontrib>Coda, H.B.</creatorcontrib><title>Nonlinear positional formulation for space truss analysis</title><title>Finite elements in analysis and design</title><description>This paper presents a new geometric nonlinear formulation for static problems involving space trusses. Based on the finite element method (FEM), the proposed formulation uses nodal positions rather than nodal displacements to describe the problem. The strain is determined directly from the proposed position concept, using a Cartesian coordinate system fixed in space. Bilinear constitutive hardening relations are considered here to model the elastoplastic effects, but any other constitutive model can be used. The proposed formulation is simple and yields good results, as shown in the example section. Four examples are presented here to validate the formulation.</description><subject>Cartesian coordinate system</subject><subject>Computational techniques</subject><subject>Design engineering</subject><subject>Elastoplasticity</subject><subject>Exact sciences and technology</subject><subject>FEM</subject><subject>Finite element method</subject><subject>Finite-element and galerkin methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Nonlinear analysis</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Space trusses</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Trusses</subject><issn>0168-874X</issn><issn>1872-6925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Ai-9KF5aJ9m0SQ8eZPELFr0oeAvZJIUs2bZmWsF_b-oueNvTzDDPOwMPIZcUCgq0ut0UjW9dKBhAVQAvAMQRmVEpWF7VrDwms0TJXAr-eUrOEDcAULKKz0j92rUhZXXM-g794LtWh6zp4nYMepqmPsNeG5cNcUTMdAJ-0OM5OWl0QHexr3Py8fjwvnzOV29PL8v7VW44Z0NeCiO1NQsH1AjKOdeiNBRqUa6tXNt1w1llrEtrB5pJBq4RjNbAecW5FXYxJ9e7u33svkaHg9p6NC4E3bpuRMVqXlEqygTeHAQpSEYlk7RK6GKHmtghRteoPvqtjj8JUpNRtVF_RtVkVAFXyWhKXe0faDQ6NFG3xuN_VNS05IIm7m7HuaTl27uo0HjXGmd9dGZQtvMH__wCV6-Mug</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Greco, M.</creator><creator>Gesualdo, F.A.R.</creator><creator>Venturini, W.S.</creator><creator>Coda, H.B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060801</creationdate><title>Nonlinear positional formulation for space truss analysis</title><author>Greco, M. ; Gesualdo, F.A.R. ; Venturini, W.S. ; Coda, H.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-57c8adc3e01c71444a75c10975bd8bdbf426cdee01e0a2820ef7219044644d7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cartesian coordinate system</topic><topic>Computational techniques</topic><topic>Design engineering</topic><topic>Elastoplasticity</topic><topic>Exact sciences and technology</topic><topic>FEM</topic><topic>Finite element method</topic><topic>Finite-element and galerkin methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Nonlinear analysis</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Space trusses</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Trusses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greco, M.</creatorcontrib><creatorcontrib>Gesualdo, F.A.R.</creatorcontrib><creatorcontrib>Venturini, W.S.</creatorcontrib><creatorcontrib>Coda, H.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Finite elements in analysis and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greco, M.</au><au>Gesualdo, F.A.R.</au><au>Venturini, W.S.</au><au>Coda, H.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear positional formulation for space truss analysis</atitle><jtitle>Finite elements in analysis and design</jtitle><date>2006-08-01</date><risdate>2006</risdate><volume>42</volume><issue>12</issue><spage>1079</spage><epage>1086</epage><pages>1079-1086</pages><issn>0168-874X</issn><eissn>1872-6925</eissn><coden>FEADEU</coden><abstract>This paper presents a new geometric nonlinear formulation for static problems involving space trusses. Based on the finite element method (FEM), the proposed formulation uses nodal positions rather than nodal displacements to describe the problem. The strain is determined directly from the proposed position concept, using a Cartesian coordinate system fixed in space. Bilinear constitutive hardening relations are considered here to model the elastoplastic effects, but any other constitutive model can be used. The proposed formulation is simple and yields good results, as shown in the example section. Four examples are presented here to validate the formulation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.finel.2006.04.007</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-874X
ispartof Finite elements in analysis and design, 2006-08, Vol.42 (12), p.1079-1086
issn 0168-874X
1872-6925
language eng
recordid cdi_proquest_miscellaneous_29461175
source Elsevier ScienceDirect Journals
subjects Cartesian coordinate system
Computational techniques
Design engineering
Elastoplasticity
Exact sciences and technology
FEM
Finite element method
Finite-element and galerkin methods
Fundamental areas of phenomenology (including applications)
Inelasticity (thermoplasticity, viscoplasticity...)
Mathematical analysis
Mathematical methods in physics
Mathematical models
Nonlinear analysis
Nonlinearity
Physics
Solid mechanics
Space trusses
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Trusses
title Nonlinear positional formulation for space truss analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A43%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20positional%20formulation%20for%20space%20truss%20analysis&rft.jtitle=Finite%20elements%20in%20analysis%20and%20design&rft.au=Greco,%20M.&rft.date=2006-08-01&rft.volume=42&rft.issue=12&rft.spage=1079&rft.epage=1086&rft.pages=1079-1086&rft.issn=0168-874X&rft.eissn=1872-6925&rft.coden=FEADEU&rft_id=info:doi/10.1016/j.finel.2006.04.007&rft_dat=%3Cproquest_cross%3E29461175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082182816&rft_id=info:pmid/&rft_els_id=S0168874X06000722&rfr_iscdi=true