Nonlinear positional formulation for space truss analysis
This paper presents a new geometric nonlinear formulation for static problems involving space trusses. Based on the finite element method (FEM), the proposed formulation uses nodal positions rather than nodal displacements to describe the problem. The strain is determined directly from the proposed...
Gespeichert in:
Veröffentlicht in: | Finite elements in analysis and design 2006-08, Vol.42 (12), p.1079-1086 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1086 |
---|---|
container_issue | 12 |
container_start_page | 1079 |
container_title | Finite elements in analysis and design |
container_volume | 42 |
creator | Greco, M. Gesualdo, F.A.R. Venturini, W.S. Coda, H.B. |
description | This paper presents a new geometric nonlinear formulation for static problems involving space trusses. Based on the finite element method (FEM), the proposed formulation uses nodal positions rather than nodal displacements to describe the problem. The strain is determined directly from the proposed position concept, using a Cartesian coordinate system fixed in space. Bilinear constitutive hardening relations are considered here to model the elastoplastic effects, but any other constitutive model can be used. The proposed formulation is simple and yields good results, as shown in the example section. Four examples are presented here to validate the formulation. |
doi_str_mv | 10.1016/j.finel.2006.04.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29461175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168874X06000722</els_id><sourcerecordid>29461175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-57c8adc3e01c71444a75c10975bd8bdbf426cdee01e0a2820ef7219044644d7d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Ai-9KF5aJ9m0SQ8eZPELFr0oeAvZJIUs2bZmWsF_b-oueNvTzDDPOwMPIZcUCgq0ut0UjW9dKBhAVQAvAMQRmVEpWF7VrDwms0TJXAr-eUrOEDcAULKKz0j92rUhZXXM-g794LtWh6zp4nYMepqmPsNeG5cNcUTMdAJ-0OM5OWl0QHexr3Py8fjwvnzOV29PL8v7VW44Z0NeCiO1NQsH1AjKOdeiNBRqUa6tXNt1w1llrEtrB5pJBq4RjNbAecW5FXYxJ9e7u33svkaHg9p6NC4E3bpuRMVqXlEqygTeHAQpSEYlk7RK6GKHmtghRteoPvqtjj8JUpNRtVF_RtVkVAFXyWhKXe0faDQ6NFG3xuN_VNS05IIm7m7HuaTl27uo0HjXGmd9dGZQtvMH__wCV6-Mug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082182816</pqid></control><display><type>article</type><title>Nonlinear positional formulation for space truss analysis</title><source>Elsevier ScienceDirect Journals</source><creator>Greco, M. ; Gesualdo, F.A.R. ; Venturini, W.S. ; Coda, H.B.</creator><creatorcontrib>Greco, M. ; Gesualdo, F.A.R. ; Venturini, W.S. ; Coda, H.B.</creatorcontrib><description>This paper presents a new geometric nonlinear formulation for static problems involving space trusses. Based on the finite element method (FEM), the proposed formulation uses nodal positions rather than nodal displacements to describe the problem. The strain is determined directly from the proposed position concept, using a Cartesian coordinate system fixed in space. Bilinear constitutive hardening relations are considered here to model the elastoplastic effects, but any other constitutive model can be used. The proposed formulation is simple and yields good results, as shown in the example section. Four examples are presented here to validate the formulation.</description><identifier>ISSN: 0168-874X</identifier><identifier>EISSN: 1872-6925</identifier><identifier>DOI: 10.1016/j.finel.2006.04.007</identifier><identifier>CODEN: FEADEU</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Cartesian coordinate system ; Computational techniques ; Design engineering ; Elastoplasticity ; Exact sciences and technology ; FEM ; Finite element method ; Finite-element and galerkin methods ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Nonlinear analysis ; Nonlinearity ; Physics ; Solid mechanics ; Space trusses ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Trusses</subject><ispartof>Finite elements in analysis and design, 2006-08, Vol.42 (12), p.1079-1086</ispartof><rights>2006 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-57c8adc3e01c71444a75c10975bd8bdbf426cdee01e0a2820ef7219044644d7d3</citedby><cites>FETCH-LOGICAL-c442t-57c8adc3e01c71444a75c10975bd8bdbf426cdee01e0a2820ef7219044644d7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168874X06000722$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17915471$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Greco, M.</creatorcontrib><creatorcontrib>Gesualdo, F.A.R.</creatorcontrib><creatorcontrib>Venturini, W.S.</creatorcontrib><creatorcontrib>Coda, H.B.</creatorcontrib><title>Nonlinear positional formulation for space truss analysis</title><title>Finite elements in analysis and design</title><description>This paper presents a new geometric nonlinear formulation for static problems involving space trusses. Based on the finite element method (FEM), the proposed formulation uses nodal positions rather than nodal displacements to describe the problem. The strain is determined directly from the proposed position concept, using a Cartesian coordinate system fixed in space. Bilinear constitutive hardening relations are considered here to model the elastoplastic effects, but any other constitutive model can be used. The proposed formulation is simple and yields good results, as shown in the example section. Four examples are presented here to validate the formulation.</description><subject>Cartesian coordinate system</subject><subject>Computational techniques</subject><subject>Design engineering</subject><subject>Elastoplasticity</subject><subject>Exact sciences and technology</subject><subject>FEM</subject><subject>Finite element method</subject><subject>Finite-element and galerkin methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Nonlinear analysis</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Space trusses</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Trusses</subject><issn>0168-874X</issn><issn>1872-6925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Ai-9KF5aJ9m0SQ8eZPELFr0oeAvZJIUs2bZmWsF_b-oueNvTzDDPOwMPIZcUCgq0ut0UjW9dKBhAVQAvAMQRmVEpWF7VrDwms0TJXAr-eUrOEDcAULKKz0j92rUhZXXM-g794LtWh6zp4nYMepqmPsNeG5cNcUTMdAJ-0OM5OWl0QHexr3Py8fjwvnzOV29PL8v7VW44Z0NeCiO1NQsH1AjKOdeiNBRqUa6tXNt1w1llrEtrB5pJBq4RjNbAecW5FXYxJ9e7u33svkaHg9p6NC4E3bpuRMVqXlEqygTeHAQpSEYlk7RK6GKHmtghRteoPvqtjj8JUpNRtVF_RtVkVAFXyWhKXe0faDQ6NFG3xuN_VNS05IIm7m7HuaTl27uo0HjXGmd9dGZQtvMH__wCV6-Mug</recordid><startdate>20060801</startdate><enddate>20060801</enddate><creator>Greco, M.</creator><creator>Gesualdo, F.A.R.</creator><creator>Venturini, W.S.</creator><creator>Coda, H.B.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060801</creationdate><title>Nonlinear positional formulation for space truss analysis</title><author>Greco, M. ; Gesualdo, F.A.R. ; Venturini, W.S. ; Coda, H.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-57c8adc3e01c71444a75c10975bd8bdbf426cdee01e0a2820ef7219044644d7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Cartesian coordinate system</topic><topic>Computational techniques</topic><topic>Design engineering</topic><topic>Elastoplasticity</topic><topic>Exact sciences and technology</topic><topic>FEM</topic><topic>Finite element method</topic><topic>Finite-element and galerkin methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Nonlinear analysis</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Space trusses</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Trusses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greco, M.</creatorcontrib><creatorcontrib>Gesualdo, F.A.R.</creatorcontrib><creatorcontrib>Venturini, W.S.</creatorcontrib><creatorcontrib>Coda, H.B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Finite elements in analysis and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greco, M.</au><au>Gesualdo, F.A.R.</au><au>Venturini, W.S.</au><au>Coda, H.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear positional formulation for space truss analysis</atitle><jtitle>Finite elements in analysis and design</jtitle><date>2006-08-01</date><risdate>2006</risdate><volume>42</volume><issue>12</issue><spage>1079</spage><epage>1086</epage><pages>1079-1086</pages><issn>0168-874X</issn><eissn>1872-6925</eissn><coden>FEADEU</coden><abstract>This paper presents a new geometric nonlinear formulation for static problems involving space trusses. Based on the finite element method (FEM), the proposed formulation uses nodal positions rather than nodal displacements to describe the problem. The strain is determined directly from the proposed position concept, using a Cartesian coordinate system fixed in space. Bilinear constitutive hardening relations are considered here to model the elastoplastic effects, but any other constitutive model can be used. The proposed formulation is simple and yields good results, as shown in the example section. Four examples are presented here to validate the formulation.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.finel.2006.04.007</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-874X |
ispartof | Finite elements in analysis and design, 2006-08, Vol.42 (12), p.1079-1086 |
issn | 0168-874X 1872-6925 |
language | eng |
recordid | cdi_proquest_miscellaneous_29461175 |
source | Elsevier ScienceDirect Journals |
subjects | Cartesian coordinate system Computational techniques Design engineering Elastoplasticity Exact sciences and technology FEM Finite element method Finite-element and galerkin methods Fundamental areas of phenomenology (including applications) Inelasticity (thermoplasticity, viscoplasticity...) Mathematical analysis Mathematical methods in physics Mathematical models Nonlinear analysis Nonlinearity Physics Solid mechanics Space trusses Static elasticity (thermoelasticity...) Structural and continuum mechanics Trusses |
title | Nonlinear positional formulation for space truss analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A43%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20positional%20formulation%20for%20space%20truss%20analysis&rft.jtitle=Finite%20elements%20in%20analysis%20and%20design&rft.au=Greco,%20M.&rft.date=2006-08-01&rft.volume=42&rft.issue=12&rft.spage=1079&rft.epage=1086&rft.pages=1079-1086&rft.issn=0168-874X&rft.eissn=1872-6925&rft.coden=FEADEU&rft_id=info:doi/10.1016/j.finel.2006.04.007&rft_dat=%3Cproquest_cross%3E29461175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082182816&rft_id=info:pmid/&rft_els_id=S0168874X06000722&rfr_iscdi=true |