An overview of projection methods for incompressible flows

A series of numerical issues related to the analysis and implementation of fractional step methods for incompressible flows are addressed in this paper. These methods are often referred to in the literature as projection methods, and can be classified into three classes, namely the pressure-correcti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2006-09, Vol.195 (44), p.6011-6045
Hauptverfasser: Guermond, J.L., Minev, P., Shen, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6045
container_issue 44
container_start_page 6011
container_title Computer methods in applied mechanics and engineering
container_volume 195
creator Guermond, J.L.
Minev, P.
Shen, Jie
description A series of numerical issues related to the analysis and implementation of fractional step methods for incompressible flows are addressed in this paper. These methods are often referred to in the literature as projection methods, and can be classified into three classes, namely the pressure-correction methods, the velocity-correction methods, and the consistent splitting methods. For each class of schemes, theoretical and numerical convergence results available in the literature are reviewed and open questions are discussed. The essential results are summarized in a table which could serve as a useful reference to numerical analysts and practitioners.
doi_str_mv 10.1016/j.cma.2005.10.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29459075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782505004640</els_id><sourcerecordid>29459075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-96667cd7d46901762bca64579150e4bf073b2d1814534e5f3b9b1d2a921bbb963</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAeyygV2Kx_EjhlWFeEmV2MDash1HOEriYqet-HtctRI7ZjOa0b3zOAhdA14ABn7XLeygFwRjlusFBnyCZlALWRKo6lM0w5iyUtSEnaOLlDqcowYyQ_fLsQhbF7fe7YrQFusYOmcnH8ZicNNXaFLRhlj40YZhHV1K3vSuaPuwS5forNV9clfHPEefz08fj6_l6v3l7XG5Ki3lYiol51zYRjSUSwyCE2M1p0xIYNhR02JRGdJADZRV1LG2MtJAQ7QkYIyRvJqj28PcfNv3xqVJDT5Z1_d6dGGTFJGUSSxYFsJBaGNIKbpWraMfdPxRgNWekupUpqT2lPatTCl7bo7DdbK6b6MerU9_RiGFwAyy7uGgc_nTDCuqZL0brWt8zLxUE_w_W34BXuR7hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29459075</pqid></control><display><type>article</type><title>An overview of projection methods for incompressible flows</title><source>Elsevier ScienceDirect Journals</source><creator>Guermond, J.L. ; Minev, P. ; Shen, Jie</creator><creatorcontrib>Guermond, J.L. ; Minev, P. ; Shen, Jie</creatorcontrib><description>A series of numerical issues related to the analysis and implementation of fractional step methods for incompressible flows are addressed in this paper. These methods are often referred to in the literature as projection methods, and can be classified into three classes, namely the pressure-correction methods, the velocity-correction methods, and the consistent splitting methods. For each class of schemes, theoretical and numerical convergence results available in the literature are reviewed and open questions are discussed. The essential results are summarized in a table which could serve as a useful reference to numerical analysts and practitioners.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2005.10.010</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computational techniques ; Exact sciences and technology ; Finite elements ; Fluid dynamics ; Fractional step methods ; Fundamental areas of phenomenology (including applications) ; General theory ; Incompressibility ; Mathematical methods in physics ; Navier–Stokes equations ; Physics ; Projection methods ; Spectral approximations</subject><ispartof>Computer methods in applied mechanics and engineering, 2006-09, Vol.195 (44), p.6011-6045</ispartof><rights>2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-96667cd7d46901762bca64579150e4bf073b2d1814534e5f3b9b1d2a921bbb963</citedby><cites>FETCH-LOGICAL-c467t-96667cd7d46901762bca64579150e4bf073b2d1814534e5f3b9b1d2a921bbb963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782505004640$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17977051$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guermond, J.L.</creatorcontrib><creatorcontrib>Minev, P.</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><title>An overview of projection methods for incompressible flows</title><title>Computer methods in applied mechanics and engineering</title><description>A series of numerical issues related to the analysis and implementation of fractional step methods for incompressible flows are addressed in this paper. These methods are often referred to in the literature as projection methods, and can be classified into three classes, namely the pressure-correction methods, the velocity-correction methods, and the consistent splitting methods. For each class of schemes, theoretical and numerical convergence results available in the literature are reviewed and open questions are discussed. The essential results are summarized in a table which could serve as a useful reference to numerical analysts and practitioners.</description><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Finite elements</subject><subject>Fluid dynamics</subject><subject>Fractional step methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Incompressibility</subject><subject>Mathematical methods in physics</subject><subject>Navier–Stokes equations</subject><subject>Physics</subject><subject>Projection methods</subject><subject>Spectral approximations</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAeyygV2Kx_EjhlWFeEmV2MDash1HOEriYqet-HtctRI7ZjOa0b3zOAhdA14ABn7XLeygFwRjlusFBnyCZlALWRKo6lM0w5iyUtSEnaOLlDqcowYyQ_fLsQhbF7fe7YrQFusYOmcnH8ZicNNXaFLRhlj40YZhHV1K3vSuaPuwS5forNV9clfHPEefz08fj6_l6v3l7XG5Ki3lYiol51zYRjSUSwyCE2M1p0xIYNhR02JRGdJADZRV1LG2MtJAQ7QkYIyRvJqj28PcfNv3xqVJDT5Z1_d6dGGTFJGUSSxYFsJBaGNIKbpWraMfdPxRgNWekupUpqT2lPatTCl7bo7DdbK6b6MerU9_RiGFwAyy7uGgc_nTDCuqZL0brWt8zLxUE_w_W34BXuR7hw</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Guermond, J.L.</creator><creator>Minev, P.</creator><creator>Shen, Jie</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060901</creationdate><title>An overview of projection methods for incompressible flows</title><author>Guermond, J.L. ; Minev, P. ; Shen, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-96667cd7d46901762bca64579150e4bf073b2d1814534e5f3b9b1d2a921bbb963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Finite elements</topic><topic>Fluid dynamics</topic><topic>Fractional step methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Incompressibility</topic><topic>Mathematical methods in physics</topic><topic>Navier–Stokes equations</topic><topic>Physics</topic><topic>Projection methods</topic><topic>Spectral approximations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guermond, J.L.</creatorcontrib><creatorcontrib>Minev, P.</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guermond, J.L.</au><au>Minev, P.</au><au>Shen, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An overview of projection methods for incompressible flows</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2006-09-01</date><risdate>2006</risdate><volume>195</volume><issue>44</issue><spage>6011</spage><epage>6045</epage><pages>6011-6045</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>A series of numerical issues related to the analysis and implementation of fractional step methods for incompressible flows are addressed in this paper. These methods are often referred to in the literature as projection methods, and can be classified into three classes, namely the pressure-correction methods, the velocity-correction methods, and the consistent splitting methods. For each class of schemes, theoretical and numerical convergence results available in the literature are reviewed and open questions are discussed. The essential results are summarized in a table which could serve as a useful reference to numerical analysts and practitioners.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2005.10.010</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2006-09, Vol.195 (44), p.6011-6045
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_miscellaneous_29459075
source Elsevier ScienceDirect Journals
subjects Computational techniques
Exact sciences and technology
Finite elements
Fluid dynamics
Fractional step methods
Fundamental areas of phenomenology (including applications)
General theory
Incompressibility
Mathematical methods in physics
Navier–Stokes equations
Physics
Projection methods
Spectral approximations
title An overview of projection methods for incompressible flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20overview%20of%20projection%20methods%20for%20incompressible%20flows&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Guermond,%20J.L.&rft.date=2006-09-01&rft.volume=195&rft.issue=44&rft.spage=6011&rft.epage=6045&rft.pages=6011-6045&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2005.10.010&rft_dat=%3Cproquest_cross%3E29459075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29459075&rft_id=info:pmid/&rft_els_id=S0045782505004640&rfr_iscdi=true