An overview of projection methods for incompressible flows
A series of numerical issues related to the analysis and implementation of fractional step methods for incompressible flows are addressed in this paper. These methods are often referred to in the literature as projection methods, and can be classified into three classes, namely the pressure-correcti...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2006-09, Vol.195 (44), p.6011-6045 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6045 |
---|---|
container_issue | 44 |
container_start_page | 6011 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 195 |
creator | Guermond, J.L. Minev, P. Shen, Jie |
description | A series of numerical issues related to the analysis and implementation of fractional step methods for incompressible flows are addressed in this paper. These methods are often referred to in the literature as projection methods, and can be classified into three classes, namely the pressure-correction methods, the velocity-correction methods, and the consistent splitting methods. For each class of schemes, theoretical and numerical convergence results available in the literature are reviewed and open questions are discussed. The essential results are summarized in a table which could serve as a useful reference to numerical analysts and practitioners. |
doi_str_mv | 10.1016/j.cma.2005.10.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29459075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782505004640</els_id><sourcerecordid>29459075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-96667cd7d46901762bca64579150e4bf073b2d1814534e5f3b9b1d2a921bbb963</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAeyygV2Kx_EjhlWFeEmV2MDash1HOEriYqet-HtctRI7ZjOa0b3zOAhdA14ABn7XLeygFwRjlusFBnyCZlALWRKo6lM0w5iyUtSEnaOLlDqcowYyQ_fLsQhbF7fe7YrQFusYOmcnH8ZicNNXaFLRhlj40YZhHV1K3vSuaPuwS5forNV9clfHPEefz08fj6_l6v3l7XG5Ki3lYiol51zYRjSUSwyCE2M1p0xIYNhR02JRGdJADZRV1LG2MtJAQ7QkYIyRvJqj28PcfNv3xqVJDT5Z1_d6dGGTFJGUSSxYFsJBaGNIKbpWraMfdPxRgNWekupUpqT2lPatTCl7bo7DdbK6b6MerU9_RiGFwAyy7uGgc_nTDCuqZL0brWt8zLxUE_w_W34BXuR7hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29459075</pqid></control><display><type>article</type><title>An overview of projection methods for incompressible flows</title><source>Elsevier ScienceDirect Journals</source><creator>Guermond, J.L. ; Minev, P. ; Shen, Jie</creator><creatorcontrib>Guermond, J.L. ; Minev, P. ; Shen, Jie</creatorcontrib><description>A series of numerical issues related to the analysis and implementation of fractional step methods for incompressible flows are addressed in this paper. These methods are often referred to in the literature as projection methods, and can be classified into three classes, namely the pressure-correction methods, the velocity-correction methods, and the consistent splitting methods. For each class of schemes, theoretical and numerical convergence results available in the literature are reviewed and open questions are discussed. The essential results are summarized in a table which could serve as a useful reference to numerical analysts and practitioners.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2005.10.010</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computational techniques ; Exact sciences and technology ; Finite elements ; Fluid dynamics ; Fractional step methods ; Fundamental areas of phenomenology (including applications) ; General theory ; Incompressibility ; Mathematical methods in physics ; Navier–Stokes equations ; Physics ; Projection methods ; Spectral approximations</subject><ispartof>Computer methods in applied mechanics and engineering, 2006-09, Vol.195 (44), p.6011-6045</ispartof><rights>2005</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-96667cd7d46901762bca64579150e4bf073b2d1814534e5f3b9b1d2a921bbb963</citedby><cites>FETCH-LOGICAL-c467t-96667cd7d46901762bca64579150e4bf073b2d1814534e5f3b9b1d2a921bbb963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782505004640$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17977051$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Guermond, J.L.</creatorcontrib><creatorcontrib>Minev, P.</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><title>An overview of projection methods for incompressible flows</title><title>Computer methods in applied mechanics and engineering</title><description>A series of numerical issues related to the analysis and implementation of fractional step methods for incompressible flows are addressed in this paper. These methods are often referred to in the literature as projection methods, and can be classified into three classes, namely the pressure-correction methods, the velocity-correction methods, and the consistent splitting methods. For each class of schemes, theoretical and numerical convergence results available in the literature are reviewed and open questions are discussed. The essential results are summarized in a table which could serve as a useful reference to numerical analysts and practitioners.</description><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Finite elements</subject><subject>Fluid dynamics</subject><subject>Fractional step methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General theory</subject><subject>Incompressibility</subject><subject>Mathematical methods in physics</subject><subject>Navier–Stokes equations</subject><subject>Physics</subject><subject>Projection methods</subject><subject>Spectral approximations</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAeyygV2Kx_EjhlWFeEmV2MDash1HOEriYqet-HtctRI7ZjOa0b3zOAhdA14ABn7XLeygFwRjlusFBnyCZlALWRKo6lM0w5iyUtSEnaOLlDqcowYyQ_fLsQhbF7fe7YrQFusYOmcnH8ZicNNXaFLRhlj40YZhHV1K3vSuaPuwS5forNV9clfHPEefz08fj6_l6v3l7XG5Ki3lYiol51zYRjSUSwyCE2M1p0xIYNhR02JRGdJADZRV1LG2MtJAQ7QkYIyRvJqj28PcfNv3xqVJDT5Z1_d6dGGTFJGUSSxYFsJBaGNIKbpWraMfdPxRgNWekupUpqT2lPatTCl7bo7DdbK6b6MerU9_RiGFwAyy7uGgc_nTDCuqZL0brWt8zLxUE_w_W34BXuR7hw</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Guermond, J.L.</creator><creator>Minev, P.</creator><creator>Shen, Jie</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060901</creationdate><title>An overview of projection methods for incompressible flows</title><author>Guermond, J.L. ; Minev, P. ; Shen, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-96667cd7d46901762bca64579150e4bf073b2d1814534e5f3b9b1d2a921bbb963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Finite elements</topic><topic>Fluid dynamics</topic><topic>Fractional step methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General theory</topic><topic>Incompressibility</topic><topic>Mathematical methods in physics</topic><topic>Navier–Stokes equations</topic><topic>Physics</topic><topic>Projection methods</topic><topic>Spectral approximations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guermond, J.L.</creatorcontrib><creatorcontrib>Minev, P.</creatorcontrib><creatorcontrib>Shen, Jie</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guermond, J.L.</au><au>Minev, P.</au><au>Shen, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An overview of projection methods for incompressible flows</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2006-09-01</date><risdate>2006</risdate><volume>195</volume><issue>44</issue><spage>6011</spage><epage>6045</epage><pages>6011-6045</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>A series of numerical issues related to the analysis and implementation of fractional step methods for incompressible flows are addressed in this paper. These methods are often referred to in the literature as projection methods, and can be classified into three classes, namely the pressure-correction methods, the velocity-correction methods, and the consistent splitting methods. For each class of schemes, theoretical and numerical convergence results available in the literature are reviewed and open questions are discussed. The essential results are summarized in a table which could serve as a useful reference to numerical analysts and practitioners.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2005.10.010</doi><tpages>35</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2006-09, Vol.195 (44), p.6011-6045 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_29459075 |
source | Elsevier ScienceDirect Journals |
subjects | Computational techniques Exact sciences and technology Finite elements Fluid dynamics Fractional step methods Fundamental areas of phenomenology (including applications) General theory Incompressibility Mathematical methods in physics Navier–Stokes equations Physics Projection methods Spectral approximations |
title | An overview of projection methods for incompressible flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20overview%20of%20projection%20methods%20for%20incompressible%20flows&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Guermond,%20J.L.&rft.date=2006-09-01&rft.volume=195&rft.issue=44&rft.spage=6011&rft.epage=6045&rft.pages=6011-6045&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/j.cma.2005.10.010&rft_dat=%3Cproquest_cross%3E29459075%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29459075&rft_id=info:pmid/&rft_els_id=S0045782505004640&rfr_iscdi=true |