Intermittent random walks for an optimal search strategy: one-dimensional case

We study the search kinetics of an immobile target by a concentration of randomly moving searchers. The object of the study is to optimize the probability of detection within the constraints of our model. The target is hidden on a one-dimensional lattice in the sense that searchers have no a priori...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Condensed matter 2007-02, Vol.19 (6), p.065142-065142 (16)
Hauptverfasser: Oshanin, G, Wio, H S, Lindenberg, K, Burlatsky, S F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 065142 (16)
container_issue 6
container_start_page 065142
container_title Journal of physics. Condensed matter
container_volume 19
creator Oshanin, G
Wio, H S
Lindenberg, K
Burlatsky, S F
description We study the search kinetics of an immobile target by a concentration of randomly moving searchers. The object of the study is to optimize the probability of detection within the constraints of our model. The target is hidden on a one-dimensional lattice in the sense that searchers have no a priori information about where it is, and may detect it only upon encounter. The searchers perform random walks in discrete time n = 0,1,2,...,N, where N is the maximal time the search process is allowed to run. With probability alpha the searchers step on a nearest-neighbour, and with probability (1-alpha) they leave the lattice and stay off until they land back on the lattice at a fixed distance L away from the departure point. The random walk is thus intermittent. We calculate the probability PN that the target remains undetected up to the maximal search time N, and seek to minimize this probability. We find that PN is a non-monotonic function of alpha, and show that there is an optimal choice alphaopt(N) of alpha well within the intermittent regime, 0 < alphaopt(N) < 1, whereby PN can be orders of magnitude smaller compared to the 'pure' random walk cases alpha = 0 and alpha = 1.
doi_str_mv 10.1088/0953-8984/19/6/065142
format Article
fullrecord <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_29457842</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29457842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-3a07dab8f8d98834e79c4bbed66b491c8a73555de1a3eba67d7fc21d47f3e62f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-BKEnT9YmTZom3mTxY2HRi4K3kDZTrbZJTSKy_96Wyl4UT3N53pl3HoROCb4gWIgMy4KmQgqWEZnxDPOCsHwPLQjlJOVMPO-jxY45REchvGGMmaBsge7XNoLv2xjBxsRra1yffOnuPSSN84m2iRti2-suCaB9_ZqE6HWEl-1l4iykpu3BhtbZEah1gGN00OguwMnPXKKnm-vH1V26ebhdr642aU15HlOqcWl0JRphpBh7QClrVlVgOK-YJLXQJS2KwgDRFCrNS1M2dU4MKxsKPG_oEp3NewfvPj4hRNW3oYau0xbcZ1C5ZEUpWD6CxQzW3oXgoVGDH9_xW0WwmuypyYyazCgiFVezvTF3PudaN-wif6JqMFMf_Bv__8I3B6mAFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29457842</pqid></control><display><type>article</type><title>Intermittent random walks for an optimal search strategy: one-dimensional case</title><source>HEAL-Link subscriptions: Institute of Physics (IOP) Journals</source><source>Institute of Physics Journals</source><creator>Oshanin, G ; Wio, H S ; Lindenberg, K ; Burlatsky, S F</creator><creatorcontrib>Oshanin, G ; Wio, H S ; Lindenberg, K ; Burlatsky, S F</creatorcontrib><description>We study the search kinetics of an immobile target by a concentration of randomly moving searchers. The object of the study is to optimize the probability of detection within the constraints of our model. The target is hidden on a one-dimensional lattice in the sense that searchers have no a priori information about where it is, and may detect it only upon encounter. The searchers perform random walks in discrete time n = 0,1,2,...,N, where N is the maximal time the search process is allowed to run. With probability alpha the searchers step on a nearest-neighbour, and with probability (1-alpha) they leave the lattice and stay off until they land back on the lattice at a fixed distance L away from the departure point. The random walk is thus intermittent. We calculate the probability PN that the target remains undetected up to the maximal search time N, and seek to minimize this probability. We find that PN is a non-monotonic function of alpha, and show that there is an optimal choice alphaopt(N) of alpha well within the intermittent regime, 0 &lt; alphaopt(N) &lt; 1, whereby PN can be orders of magnitude smaller compared to the 'pure' random walk cases alpha = 0 and alpha = 1.</description><identifier>ISSN: 0953-8984</identifier><identifier>EISSN: 1361-648X</identifier><identifier>DOI: 10.1088/0953-8984/19/6/065142</identifier><language>eng</language><publisher>IOP Publishing</publisher><ispartof>Journal of physics. Condensed matter, 2007-02, Vol.19 (6), p.065142-065142 (16)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-3a07dab8f8d98834e79c4bbed66b491c8a73555de1a3eba67d7fc21d47f3e62f3</citedby><cites>FETCH-LOGICAL-c362t-3a07dab8f8d98834e79c4bbed66b491c8a73555de1a3eba67d7fc21d47f3e62f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0953-8984/19/6/065142/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,776,780,27901,27902,53805,53885</link.rule.ids></links><search><creatorcontrib>Oshanin, G</creatorcontrib><creatorcontrib>Wio, H S</creatorcontrib><creatorcontrib>Lindenberg, K</creatorcontrib><creatorcontrib>Burlatsky, S F</creatorcontrib><title>Intermittent random walks for an optimal search strategy: one-dimensional case</title><title>Journal of physics. Condensed matter</title><description>We study the search kinetics of an immobile target by a concentration of randomly moving searchers. The object of the study is to optimize the probability of detection within the constraints of our model. The target is hidden on a one-dimensional lattice in the sense that searchers have no a priori information about where it is, and may detect it only upon encounter. The searchers perform random walks in discrete time n = 0,1,2,...,N, where N is the maximal time the search process is allowed to run. With probability alpha the searchers step on a nearest-neighbour, and with probability (1-alpha) they leave the lattice and stay off until they land back on the lattice at a fixed distance L away from the departure point. The random walk is thus intermittent. We calculate the probability PN that the target remains undetected up to the maximal search time N, and seek to minimize this probability. We find that PN is a non-monotonic function of alpha, and show that there is an optimal choice alphaopt(N) of alpha well within the intermittent regime, 0 &lt; alphaopt(N) &lt; 1, whereby PN can be orders of magnitude smaller compared to the 'pure' random walk cases alpha = 0 and alpha = 1.</description><issn>0953-8984</issn><issn>1361-648X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-BKEnT9YmTZom3mTxY2HRi4K3kDZTrbZJTSKy_96Wyl4UT3N53pl3HoROCb4gWIgMy4KmQgqWEZnxDPOCsHwPLQjlJOVMPO-jxY45REchvGGMmaBsge7XNoLv2xjBxsRra1yffOnuPSSN84m2iRti2-suCaB9_ZqE6HWEl-1l4iykpu3BhtbZEah1gGN00OguwMnPXKKnm-vH1V26ebhdr642aU15HlOqcWl0JRphpBh7QClrVlVgOK-YJLXQJS2KwgDRFCrNS1M2dU4MKxsKPG_oEp3NewfvPj4hRNW3oYau0xbcZ1C5ZEUpWD6CxQzW3oXgoVGDH9_xW0WwmuypyYyazCgiFVezvTF3PudaN-wif6JqMFMf_Bv__8I3B6mAFw</recordid><startdate>20070214</startdate><enddate>20070214</enddate><creator>Oshanin, G</creator><creator>Wio, H S</creator><creator>Lindenberg, K</creator><creator>Burlatsky, S F</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20070214</creationdate><title>Intermittent random walks for an optimal search strategy: one-dimensional case</title><author>Oshanin, G ; Wio, H S ; Lindenberg, K ; Burlatsky, S F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-3a07dab8f8d98834e79c4bbed66b491c8a73555de1a3eba67d7fc21d47f3e62f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oshanin, G</creatorcontrib><creatorcontrib>Wio, H S</creatorcontrib><creatorcontrib>Lindenberg, K</creatorcontrib><creatorcontrib>Burlatsky, S F</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oshanin, G</au><au>Wio, H S</au><au>Lindenberg, K</au><au>Burlatsky, S F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intermittent random walks for an optimal search strategy: one-dimensional case</atitle><jtitle>Journal of physics. Condensed matter</jtitle><date>2007-02-14</date><risdate>2007</risdate><volume>19</volume><issue>6</issue><spage>065142</spage><epage>065142 (16)</epage><pages>065142-065142 (16)</pages><issn>0953-8984</issn><eissn>1361-648X</eissn><abstract>We study the search kinetics of an immobile target by a concentration of randomly moving searchers. The object of the study is to optimize the probability of detection within the constraints of our model. The target is hidden on a one-dimensional lattice in the sense that searchers have no a priori information about where it is, and may detect it only upon encounter. The searchers perform random walks in discrete time n = 0,1,2,...,N, where N is the maximal time the search process is allowed to run. With probability alpha the searchers step on a nearest-neighbour, and with probability (1-alpha) they leave the lattice and stay off until they land back on the lattice at a fixed distance L away from the departure point. The random walk is thus intermittent. We calculate the probability PN that the target remains undetected up to the maximal search time N, and seek to minimize this probability. We find that PN is a non-monotonic function of alpha, and show that there is an optimal choice alphaopt(N) of alpha well within the intermittent regime, 0 &lt; alphaopt(N) &lt; 1, whereby PN can be orders of magnitude smaller compared to the 'pure' random walk cases alpha = 0 and alpha = 1.</abstract><pub>IOP Publishing</pub><doi>10.1088/0953-8984/19/6/065142</doi></addata></record>
fulltext fulltext
identifier ISSN: 0953-8984
ispartof Journal of physics. Condensed matter, 2007-02, Vol.19 (6), p.065142-065142 (16)
issn 0953-8984
1361-648X
language eng
recordid cdi_proquest_miscellaneous_29457842
source HEAL-Link subscriptions: Institute of Physics (IOP) Journals; Institute of Physics Journals
title Intermittent random walks for an optimal search strategy: one-dimensional case
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intermittent%20random%20walks%20for%20an%20optimal%20search%20strategy:%20one-dimensional%20case&rft.jtitle=Journal%20of%20physics.%20Condensed%20matter&rft.au=Oshanin,%20G&rft.date=2007-02-14&rft.volume=19&rft.issue=6&rft.spage=065142&rft.epage=065142%20(16)&rft.pages=065142-065142%20(16)&rft.issn=0953-8984&rft.eissn=1361-648X&rft_id=info:doi/10.1088/0953-8984/19/6/065142&rft_dat=%3Cproquest_iop_p%3E29457842%3C/proquest_iop_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29457842&rft_id=info:pmid/&rfr_iscdi=true