Anti-intuitionism and paraconsistency

This paper aims to help to elucidate some questions on the duality between the intuitionistic and the paraconsistent paradigms of thought, proposing some new classes of anti-intuitionistic propositional logics and investigating their relationships with the original intuitionistic logics. It is shown...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied logic 2005-03, Vol.3 (1), p.161-184
Hauptverfasser: Brunner, Andreas B.M., Carnielli, Walter A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 184
container_issue 1
container_start_page 161
container_title Journal of applied logic
container_volume 3
creator Brunner, Andreas B.M.
Carnielli, Walter A.
description This paper aims to help to elucidate some questions on the duality between the intuitionistic and the paraconsistent paradigms of thought, proposing some new classes of anti-intuitionistic propositional logics and investigating their relationships with the original intuitionistic logics. It is shown here that anti-intuitionistic logics are paraconsistent, and in particular we develop a first anti-intuitionistic hierarchy starting with Johansson's dual calculus and ending up with Gödel's three-valued dual calculus, showing that no calculus of this hierarchy allows the introduction of an internal implication symbol. Comparing these anti-intuitionistic logics with well-known paraconsistent calculi, we prove that they do not coincide with any of these. On the other hand, by dualizing the hierarchy of the paracomplete (or maximal weakly intuitionistic) many-valued logics ( I n ) n ∈ ω we show that the anti-intuitionistic hierarchy ( I n ∗ ) n ∈ ω obtained from ( I n ) n ∈ ω does coincide with the hierarchy of the many-valued paraconsistent logics ( P n ) n ∈ ω . Fundamental properties of our method are investigated, and we also discuss some questions on the duality between the intuitionistic and the paraconsistent paradigms, including the problem of self-duality. We argue that questions of duality quite naturally require refutative systems (which we call elenctic systems) as well as the usual demonstrative systems (which we call deictic systems), and multiple-conclusion logics are used as an appropriate environment to deal with them.
doi_str_mv 10.1016/j.jal.2004.07.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29456332</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1570868304000564</els_id><sourcerecordid>29456332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2866-3ca305608e78a931dc19f63a47a74d4f95813a9bd5c0d034e545ccd5da38fb143</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHez0V1r0jya4GoYfMGAG12HO0kKKW1ak1aYf2-GiktX93D4zoVzELoluCSYiIe2bKErK4xZiesyO2doRXiNCykUOf_Tkl6iq5TazFVMqBW624bJFz5Ms5_8EHzqNxDsZoQIZgjJp8kFc7xGFw10yd383jX6fH762L0W-_eXt912X5hKClFQAxRzgaWrJShKrCGqERRYDTWzrFFcEgrqYLnBFlPmOOPGWG6ByuZAGF2j--XvGIev2aVJ9z4Z13UQ3DAnXSnGBaVVBskCmjikFF2jx-h7iEdNsD4NoludB9GnQTSudXZy5nHJuNzg27uok_G5nbM-OjNpO_h_0j822mfB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29456332</pqid></control><display><type>article</type><title>Anti-intuitionism and paraconsistency</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Brunner, Andreas B.M. ; Carnielli, Walter A.</creator><creatorcontrib>Brunner, Andreas B.M. ; Carnielli, Walter A.</creatorcontrib><description>This paper aims to help to elucidate some questions on the duality between the intuitionistic and the paraconsistent paradigms of thought, proposing some new classes of anti-intuitionistic propositional logics and investigating their relationships with the original intuitionistic logics. It is shown here that anti-intuitionistic logics are paraconsistent, and in particular we develop a first anti-intuitionistic hierarchy starting with Johansson's dual calculus and ending up with Gödel's three-valued dual calculus, showing that no calculus of this hierarchy allows the introduction of an internal implication symbol. Comparing these anti-intuitionistic logics with well-known paraconsistent calculi, we prove that they do not coincide with any of these. On the other hand, by dualizing the hierarchy of the paracomplete (or maximal weakly intuitionistic) many-valued logics ( I n ) n ∈ ω we show that the anti-intuitionistic hierarchy ( I n ∗ ) n ∈ ω obtained from ( I n ) n ∈ ω does coincide with the hierarchy of the many-valued paraconsistent logics ( P n ) n ∈ ω . Fundamental properties of our method are investigated, and we also discuss some questions on the duality between the intuitionistic and the paraconsistent paradigms, including the problem of self-duality. We argue that questions of duality quite naturally require refutative systems (which we call elenctic systems) as well as the usual demonstrative systems (which we call deictic systems), and multiple-conclusion logics are used as an appropriate environment to deal with them.</description><identifier>ISSN: 1570-8683</identifier><identifier>EISSN: 1570-8691</identifier><identifier>DOI: 10.1016/j.jal.2004.07.016</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Anti-intuitionism ; Dual-intuitionistic logics ; Dualizing logics ; Intuitionism ; Paracompleteness ; Paraconsistency</subject><ispartof>Journal of applied logic, 2005-03, Vol.3 (1), p.161-184</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2866-3ca305608e78a931dc19f63a47a74d4f95813a9bd5c0d034e545ccd5da38fb143</citedby><cites>FETCH-LOGICAL-c2866-3ca305608e78a931dc19f63a47a74d4f95813a9bd5c0d034e545ccd5da38fb143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1570868304000564$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Brunner, Andreas B.M.</creatorcontrib><creatorcontrib>Carnielli, Walter A.</creatorcontrib><title>Anti-intuitionism and paraconsistency</title><title>Journal of applied logic</title><description>This paper aims to help to elucidate some questions on the duality between the intuitionistic and the paraconsistent paradigms of thought, proposing some new classes of anti-intuitionistic propositional logics and investigating their relationships with the original intuitionistic logics. It is shown here that anti-intuitionistic logics are paraconsistent, and in particular we develop a first anti-intuitionistic hierarchy starting with Johansson's dual calculus and ending up with Gödel's three-valued dual calculus, showing that no calculus of this hierarchy allows the introduction of an internal implication symbol. Comparing these anti-intuitionistic logics with well-known paraconsistent calculi, we prove that they do not coincide with any of these. On the other hand, by dualizing the hierarchy of the paracomplete (or maximal weakly intuitionistic) many-valued logics ( I n ) n ∈ ω we show that the anti-intuitionistic hierarchy ( I n ∗ ) n ∈ ω obtained from ( I n ) n ∈ ω does coincide with the hierarchy of the many-valued paraconsistent logics ( P n ) n ∈ ω . Fundamental properties of our method are investigated, and we also discuss some questions on the duality between the intuitionistic and the paraconsistent paradigms, including the problem of self-duality. We argue that questions of duality quite naturally require refutative systems (which we call elenctic systems) as well as the usual demonstrative systems (which we call deictic systems), and multiple-conclusion logics are used as an appropriate environment to deal with them.</description><subject>Anti-intuitionism</subject><subject>Dual-intuitionistic logics</subject><subject>Dualizing logics</subject><subject>Intuitionism</subject><subject>Paracompleteness</subject><subject>Paraconsistency</subject><issn>1570-8683</issn><issn>1570-8691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHez0V1r0jya4GoYfMGAG12HO0kKKW1ak1aYf2-GiktX93D4zoVzELoluCSYiIe2bKErK4xZiesyO2doRXiNCykUOf_Tkl6iq5TazFVMqBW624bJFz5Ms5_8EHzqNxDsZoQIZgjJp8kFc7xGFw10yd383jX6fH762L0W-_eXt912X5hKClFQAxRzgaWrJShKrCGqERRYDTWzrFFcEgrqYLnBFlPmOOPGWG6ByuZAGF2j--XvGIev2aVJ9z4Z13UQ3DAnXSnGBaVVBskCmjikFF2jx-h7iEdNsD4NoludB9GnQTSudXZy5nHJuNzg27uok_G5nbM-OjNpO_h_0j822mfB</recordid><startdate>200503</startdate><enddate>200503</enddate><creator>Brunner, Andreas B.M.</creator><creator>Carnielli, Walter A.</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200503</creationdate><title>Anti-intuitionism and paraconsistency</title><author>Brunner, Andreas B.M. ; Carnielli, Walter A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2866-3ca305608e78a931dc19f63a47a74d4f95813a9bd5c0d034e545ccd5da38fb143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Anti-intuitionism</topic><topic>Dual-intuitionistic logics</topic><topic>Dualizing logics</topic><topic>Intuitionism</topic><topic>Paracompleteness</topic><topic>Paraconsistency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brunner, Andreas B.M.</creatorcontrib><creatorcontrib>Carnielli, Walter A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brunner, Andreas B.M.</au><au>Carnielli, Walter A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-intuitionism and paraconsistency</atitle><jtitle>Journal of applied logic</jtitle><date>2005-03</date><risdate>2005</risdate><volume>3</volume><issue>1</issue><spage>161</spage><epage>184</epage><pages>161-184</pages><issn>1570-8683</issn><eissn>1570-8691</eissn><abstract>This paper aims to help to elucidate some questions on the duality between the intuitionistic and the paraconsistent paradigms of thought, proposing some new classes of anti-intuitionistic propositional logics and investigating their relationships with the original intuitionistic logics. It is shown here that anti-intuitionistic logics are paraconsistent, and in particular we develop a first anti-intuitionistic hierarchy starting with Johansson's dual calculus and ending up with Gödel's three-valued dual calculus, showing that no calculus of this hierarchy allows the introduction of an internal implication symbol. Comparing these anti-intuitionistic logics with well-known paraconsistent calculi, we prove that they do not coincide with any of these. On the other hand, by dualizing the hierarchy of the paracomplete (or maximal weakly intuitionistic) many-valued logics ( I n ) n ∈ ω we show that the anti-intuitionistic hierarchy ( I n ∗ ) n ∈ ω obtained from ( I n ) n ∈ ω does coincide with the hierarchy of the many-valued paraconsistent logics ( P n ) n ∈ ω . Fundamental properties of our method are investigated, and we also discuss some questions on the duality between the intuitionistic and the paraconsistent paradigms, including the problem of self-duality. We argue that questions of duality quite naturally require refutative systems (which we call elenctic systems) as well as the usual demonstrative systems (which we call deictic systems), and multiple-conclusion logics are used as an appropriate environment to deal with them.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jal.2004.07.016</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1570-8683
ispartof Journal of applied logic, 2005-03, Vol.3 (1), p.161-184
issn 1570-8683
1570-8691
language eng
recordid cdi_proquest_miscellaneous_29456332
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Anti-intuitionism
Dual-intuitionistic logics
Dualizing logics
Intuitionism
Paracompleteness
Paraconsistency
title Anti-intuitionism and paraconsistency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T04%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-intuitionism%20and%20paraconsistency&rft.jtitle=Journal%20of%20applied%20logic&rft.au=Brunner,%20Andreas%20B.M.&rft.date=2005-03&rft.volume=3&rft.issue=1&rft.spage=161&rft.epage=184&rft.pages=161-184&rft.issn=1570-8683&rft.eissn=1570-8691&rft_id=info:doi/10.1016/j.jal.2004.07.016&rft_dat=%3Cproquest_cross%3E29456332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29456332&rft_id=info:pmid/&rft_els_id=S1570868304000564&rfr_iscdi=true