Initial conditions for Large Eddy Simulations of piston engine flows

The exact knowledge of the flow in a piston engine chamber is of vital interest in engine design. These flows feature 3D highly unsteady turbulent phenomena combined with combustion processes. Large Eddy Simulations (LES) appear to be a promising way to simulate them. However, computing several engi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2007-05, Vol.36 (4), p.701-713
Hauptverfasser: Devesa, A., Moreau, J., Hélie, J., Faivre, V., Poinsot, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 713
container_issue 4
container_start_page 701
container_title Computers & fluids
container_volume 36
creator Devesa, A.
Moreau, J.
Hélie, J.
Faivre, V.
Poinsot, T.
description The exact knowledge of the flow in a piston engine chamber is of vital interest in engine design. These flows feature 3D highly unsteady turbulent phenomena combined with combustion processes. Large Eddy Simulations (LES) appear to be a promising way to simulate them. However, computing several engine cycles results in excessive computational costs. Therefore, a different approach, namely the single-cycle strategy (SC), is to perform several simulations just of those parts of one engine cycle that are of interest. In this study, non-reacting LES is undertaken with a SC strategy for the injection of gas into a tumbling motion. Measured data are used for both the initialization and the validation of the computations. In addition, the initial field is varied using a proper orthogonal decomposition analysis on the experimental data to mimic realistic cycle-to-cycle variations of the tumble before the injection. Satisfactory results are obtained by using a simple procedure for creating initial conditions based on experimental data. By changing the initial field, it is demonstrated that initial conditions have a very significant influence on the LES results. This influence may restrict the use of SC strategies in favour of mutiple-cycle computations.
doi_str_mv 10.1016/j.compfluid.2006.02.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29456238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793006000752</els_id><sourcerecordid>29456238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-e8712f8e2427e7f6ee32130c99651a641cf5c65172bd1809b4827d5d7fb31743</originalsourceid><addsrcrecordid>eNqFUEFOwzAQtBBIlMIbyAVuCbbjxMmxKgUqVeJA75ZrrytXiV3sFNTf4yoVHDnNrHZmRzsI3RNcEEzqp12hfL833cHqgmJcF5gWCS7QhDS8zTFn_BJNMGZVztsSX6ObGHc4zSVlE_S8dHawssuUdzox72JmfMhWMmwhW2h9zD5sf-jkuPIm29s4eJeB21oHmen8d7xFV0Z2Ee7OOEXrl8V6_pav3l-X89kqVyWvhxwaTqhpgDLKgZsaoKSkxKpt64rImhFlKpUopxtNGtxuWEO5rjQ3m5JwVk7R43h2H_znAeIgehsVdJ104A9R0JZVNS2bJOSjUAUfYwAj9sH2MhwFweJUmtiJ39LEqTSBqUiQnA_nCBmV7EyQTtn4Z29Y21DCk2426iC9-2UhiKgsOAXaBlCD0N7-m_UDCD2GQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29456238</pqid></control><display><type>article</type><title>Initial conditions for Large Eddy Simulations of piston engine flows</title><source>Access via ScienceDirect (Elsevier)</source><creator>Devesa, A. ; Moreau, J. ; Hélie, J. ; Faivre, V. ; Poinsot, T.</creator><creatorcontrib>Devesa, A. ; Moreau, J. ; Hélie, J. ; Faivre, V. ; Poinsot, T.</creatorcontrib><description>The exact knowledge of the flow in a piston engine chamber is of vital interest in engine design. These flows feature 3D highly unsteady turbulent phenomena combined with combustion processes. Large Eddy Simulations (LES) appear to be a promising way to simulate them. However, computing several engine cycles results in excessive computational costs. Therefore, a different approach, namely the single-cycle strategy (SC), is to perform several simulations just of those parts of one engine cycle that are of interest. In this study, non-reacting LES is undertaken with a SC strategy for the injection of gas into a tumbling motion. Measured data are used for both the initialization and the validation of the computations. In addition, the initial field is varied using a proper orthogonal decomposition analysis on the experimental data to mimic realistic cycle-to-cycle variations of the tumble before the injection. Satisfactory results are obtained by using a simple procedure for creating initial conditions based on experimental data. By changing the initial field, it is demonstrated that initial conditions have a very significant influence on the LES results. This influence may restrict the use of SC strategies in favour of mutiple-cycle computations.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2006.02.006</identifier><identifier>CODEN: CPFLBI</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Energy ; Energy. Thermal use of fuels ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Physics ; Turbulence simulation and modeling ; Turbulent flows, convection, and heat transfer</subject><ispartof>Computers &amp; fluids, 2007-05, Vol.36 (4), p.701-713</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-e8712f8e2427e7f6ee32130c99651a641cf5c65172bd1809b4827d5d7fb31743</citedby><cites>FETCH-LOGICAL-c376t-e8712f8e2427e7f6ee32130c99651a641cf5c65172bd1809b4827d5d7fb31743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2006.02.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18498217$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Devesa, A.</creatorcontrib><creatorcontrib>Moreau, J.</creatorcontrib><creatorcontrib>Hélie, J.</creatorcontrib><creatorcontrib>Faivre, V.</creatorcontrib><creatorcontrib>Poinsot, T.</creatorcontrib><title>Initial conditions for Large Eddy Simulations of piston engine flows</title><title>Computers &amp; fluids</title><description>The exact knowledge of the flow in a piston engine chamber is of vital interest in engine design. These flows feature 3D highly unsteady turbulent phenomena combined with combustion processes. Large Eddy Simulations (LES) appear to be a promising way to simulate them. However, computing several engine cycles results in excessive computational costs. Therefore, a different approach, namely the single-cycle strategy (SC), is to perform several simulations just of those parts of one engine cycle that are of interest. In this study, non-reacting LES is undertaken with a SC strategy for the injection of gas into a tumbling motion. Measured data are used for both the initialization and the validation of the computations. In addition, the initial field is varied using a proper orthogonal decomposition analysis on the experimental data to mimic realistic cycle-to-cycle variations of the tumble before the injection. Satisfactory results are obtained by using a simple procedure for creating initial conditions based on experimental data. By changing the initial field, it is demonstrated that initial conditions have a very significant influence on the LES results. This influence may restrict the use of SC strategies in favour of mutiple-cycle computations.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Turbulence simulation and modeling</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFUEFOwzAQtBBIlMIbyAVuCbbjxMmxKgUqVeJA75ZrrytXiV3sFNTf4yoVHDnNrHZmRzsI3RNcEEzqp12hfL833cHqgmJcF5gWCS7QhDS8zTFn_BJNMGZVztsSX6ObGHc4zSVlE_S8dHawssuUdzox72JmfMhWMmwhW2h9zD5sf-jkuPIm29s4eJeB21oHmen8d7xFV0Z2Ee7OOEXrl8V6_pav3l-X89kqVyWvhxwaTqhpgDLKgZsaoKSkxKpt64rImhFlKpUopxtNGtxuWEO5rjQ3m5JwVk7R43h2H_znAeIgehsVdJ104A9R0JZVNS2bJOSjUAUfYwAj9sH2MhwFweJUmtiJ39LEqTSBqUiQnA_nCBmV7EyQTtn4Z29Y21DCk2426iC9-2UhiKgsOAXaBlCD0N7-m_UDCD2GQw</recordid><startdate>20070501</startdate><enddate>20070501</enddate><creator>Devesa, A.</creator><creator>Moreau, J.</creator><creator>Hélie, J.</creator><creator>Faivre, V.</creator><creator>Poinsot, T.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070501</creationdate><title>Initial conditions for Large Eddy Simulations of piston engine flows</title><author>Devesa, A. ; Moreau, J. ; Hélie, J. ; Faivre, V. ; Poinsot, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-e8712f8e2427e7f6ee32130c99651a641cf5c65172bd1809b4827d5d7fb31743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Turbulence simulation and modeling</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devesa, A.</creatorcontrib><creatorcontrib>Moreau, J.</creatorcontrib><creatorcontrib>Hélie, J.</creatorcontrib><creatorcontrib>Faivre, V.</creatorcontrib><creatorcontrib>Poinsot, T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devesa, A.</au><au>Moreau, J.</au><au>Hélie, J.</au><au>Faivre, V.</au><au>Poinsot, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initial conditions for Large Eddy Simulations of piston engine flows</atitle><jtitle>Computers &amp; fluids</jtitle><date>2007-05-01</date><risdate>2007</risdate><volume>36</volume><issue>4</issue><spage>701</spage><epage>713</epage><pages>701-713</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><coden>CPFLBI</coden><abstract>The exact knowledge of the flow in a piston engine chamber is of vital interest in engine design. These flows feature 3D highly unsteady turbulent phenomena combined with combustion processes. Large Eddy Simulations (LES) appear to be a promising way to simulate them. However, computing several engine cycles results in excessive computational costs. Therefore, a different approach, namely the single-cycle strategy (SC), is to perform several simulations just of those parts of one engine cycle that are of interest. In this study, non-reacting LES is undertaken with a SC strategy for the injection of gas into a tumbling motion. Measured data are used for both the initialization and the validation of the computations. In addition, the initial field is varied using a proper orthogonal decomposition analysis on the experimental data to mimic realistic cycle-to-cycle variations of the tumble before the injection. Satisfactory results are obtained by using a simple procedure for creating initial conditions based on experimental data. By changing the initial field, it is demonstrated that initial conditions have a very significant influence on the LES results. This influence may restrict the use of SC strategies in favour of mutiple-cycle computations.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2006.02.006</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2007-05, Vol.36 (4), p.701-713
issn 0045-7930
1879-0747
language eng
recordid cdi_proquest_miscellaneous_29456238
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Energy
Energy. Thermal use of fuels
Engines and turbines
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Physics
Turbulence simulation and modeling
Turbulent flows, convection, and heat transfer
title Initial conditions for Large Eddy Simulations of piston engine flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initial%20conditions%20for%20Large%20Eddy%20Simulations%20of%20piston%20engine%20flows&rft.jtitle=Computers%20&%20fluids&rft.au=Devesa,%20A.&rft.date=2007-05-01&rft.volume=36&rft.issue=4&rft.spage=701&rft.epage=713&rft.pages=701-713&rft.issn=0045-7930&rft.eissn=1879-0747&rft.coden=CPFLBI&rft_id=info:doi/10.1016/j.compfluid.2006.02.006&rft_dat=%3Cproquest_cross%3E29456238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29456238&rft_id=info:pmid/&rft_els_id=S0045793006000752&rfr_iscdi=true