Neuro-fuzzy position control of demining tele-operation system based on RNN modeling

The paper considers the neuro-fuzzy position control of multi-finger robot hand in tele-operation system—an active master–slave hand system (MSHS) for demining. Recently, fuzzy control systems utilizing artificial intelligent techniques are also being actively investigated in robotic area. Neural ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Robotics and computer-integrated manufacturing 2006-02, Vol.22 (1), p.25-32
Hauptverfasser: Shao, Hui, Nonami, Kenzo, Wojtara, Tytus, Yuasa, Ryohei, Amano, Shingo, Waterman, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 32
container_issue 1
container_start_page 25
container_title Robotics and computer-integrated manufacturing
container_volume 22
creator Shao, Hui
Nonami, Kenzo
Wojtara, Tytus
Yuasa, Ryohei
Amano, Shingo
Waterman, Daniel
description The paper considers the neuro-fuzzy position control of multi-finger robot hand in tele-operation system—an active master–slave hand system (MSHS) for demining. Recently, fuzzy control systems utilizing artificial intelligent techniques are also being actively investigated in robotic area. Neural network with their powerful learning capability are being sought as the basis for many adaptive control systems where on-line adaptation can be implemented. Fuzzy logic on the other hand has been proved to be rather popular in many control system applications providing a rule-base like structure. In this paper, the design and optimization process of fuzzy position controller is supported by learning techniques derived from neural network where a radial basis function (RBF) neural network is implemented to learn fuzzy rules and membership functions with predictor of recurrent neural network (RNN) model. The results of experiment show that based on the predictive capability of RNN model neuro-fuzzy controller with good adaptation and robustness capability can be designed.
doi_str_mv 10.1016/j.rcim.2005.01.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29456041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0736584505000189</els_id><sourcerecordid>29456041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-fe876852c4b489970840530b881d52fda694298ac28fdf4608cec30f675e02f3</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMoOKf_gKecvLW-pEmbghcZ_oIxQXYPXfIiGW0zk1bY_no759nT48H3PXgfIbcMcgasvN_m0fgu5wAyB5YDFGdkxlRVZ1wW1TmZQVWUmVRCXpKrlLYAwIUsZmS9wjGGzI2Hw57uQvKDDz01oR9iaGlw1GLne99_0gFbzMIOY_OLpH0asKObJqGl0_6xWtEuWGwn9ppcuKZNePM352T9_LRevGbL95e3xeMyM4KXQ-ZQVaWS3IiNUHVdgRIgC9goxazkzjZlLXitGsOVs06UoAyaAlxZSQTuijm5O53dxfA1Yhp055PBtm16DGPSvBayBMEmkJ9AE0NKEZ3eRd81ca8Z6GM_vdXHfvrYTwPTU79JejhJOH3w7THqZDz2Bq2PaAZtg_9P_wFFS3mi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29456041</pqid></control><display><type>article</type><title>Neuro-fuzzy position control of demining tele-operation system based on RNN modeling</title><source>Elsevier ScienceDirect Journals</source><creator>Shao, Hui ; Nonami, Kenzo ; Wojtara, Tytus ; Yuasa, Ryohei ; Amano, Shingo ; Waterman, Daniel</creator><creatorcontrib>Shao, Hui ; Nonami, Kenzo ; Wojtara, Tytus ; Yuasa, Ryohei ; Amano, Shingo ; Waterman, Daniel</creatorcontrib><description>The paper considers the neuro-fuzzy position control of multi-finger robot hand in tele-operation system—an active master–slave hand system (MSHS) for demining. Recently, fuzzy control systems utilizing artificial intelligent techniques are also being actively investigated in robotic area. Neural network with their powerful learning capability are being sought as the basis for many adaptive control systems where on-line adaptation can be implemented. Fuzzy logic on the other hand has been proved to be rather popular in many control system applications providing a rule-base like structure. In this paper, the design and optimization process of fuzzy position controller is supported by learning techniques derived from neural network where a radial basis function (RBF) neural network is implemented to learn fuzzy rules and membership functions with predictor of recurrent neural network (RNN) model. The results of experiment show that based on the predictive capability of RNN model neuro-fuzzy controller with good adaptation and robustness capability can be designed.</description><identifier>ISSN: 0736-5845</identifier><identifier>EISSN: 1879-2537</identifier><identifier>DOI: 10.1016/j.rcim.2005.01.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Fuzzy neural network (FNN) ; Master–slave hand system (MSHS) ; Recurrent neural network (RNN) ; Tele-operation system</subject><ispartof>Robotics and computer-integrated manufacturing, 2006-02, Vol.22 (1), p.25-32</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-fe876852c4b489970840530b881d52fda694298ac28fdf4608cec30f675e02f3</citedby><cites>FETCH-LOGICAL-c426t-fe876852c4b489970840530b881d52fda694298ac28fdf4608cec30f675e02f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0736584505000189$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Shao, Hui</creatorcontrib><creatorcontrib>Nonami, Kenzo</creatorcontrib><creatorcontrib>Wojtara, Tytus</creatorcontrib><creatorcontrib>Yuasa, Ryohei</creatorcontrib><creatorcontrib>Amano, Shingo</creatorcontrib><creatorcontrib>Waterman, Daniel</creatorcontrib><title>Neuro-fuzzy position control of demining tele-operation system based on RNN modeling</title><title>Robotics and computer-integrated manufacturing</title><description>The paper considers the neuro-fuzzy position control of multi-finger robot hand in tele-operation system—an active master–slave hand system (MSHS) for demining. Recently, fuzzy control systems utilizing artificial intelligent techniques are also being actively investigated in robotic area. Neural network with their powerful learning capability are being sought as the basis for many adaptive control systems where on-line adaptation can be implemented. Fuzzy logic on the other hand has been proved to be rather popular in many control system applications providing a rule-base like structure. In this paper, the design and optimization process of fuzzy position controller is supported by learning techniques derived from neural network where a radial basis function (RBF) neural network is implemented to learn fuzzy rules and membership functions with predictor of recurrent neural network (RNN) model. The results of experiment show that based on the predictive capability of RNN model neuro-fuzzy controller with good adaptation and robustness capability can be designed.</description><subject>Fuzzy neural network (FNN)</subject><subject>Master–slave hand system (MSHS)</subject><subject>Recurrent neural network (RNN)</subject><subject>Tele-operation system</subject><issn>0736-5845</issn><issn>1879-2537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUgIMoOKf_gKecvLW-pEmbghcZ_oIxQXYPXfIiGW0zk1bY_no759nT48H3PXgfIbcMcgasvN_m0fgu5wAyB5YDFGdkxlRVZ1wW1TmZQVWUmVRCXpKrlLYAwIUsZmS9wjGGzI2Hw57uQvKDDz01oR9iaGlw1GLne99_0gFbzMIOY_OLpH0asKObJqGl0_6xWtEuWGwn9ppcuKZNePM352T9_LRevGbL95e3xeMyM4KXQ-ZQVaWS3IiNUHVdgRIgC9goxazkzjZlLXitGsOVs06UoAyaAlxZSQTuijm5O53dxfA1Yhp055PBtm16DGPSvBayBMEmkJ9AE0NKEZ3eRd81ca8Z6GM_vdXHfvrYTwPTU79JejhJOH3w7THqZDz2Bq2PaAZtg_9P_wFFS3mi</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Shao, Hui</creator><creator>Nonami, Kenzo</creator><creator>Wojtara, Tytus</creator><creator>Yuasa, Ryohei</creator><creator>Amano, Shingo</creator><creator>Waterman, Daniel</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060201</creationdate><title>Neuro-fuzzy position control of demining tele-operation system based on RNN modeling</title><author>Shao, Hui ; Nonami, Kenzo ; Wojtara, Tytus ; Yuasa, Ryohei ; Amano, Shingo ; Waterman, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-fe876852c4b489970840530b881d52fda694298ac28fdf4608cec30f675e02f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Fuzzy neural network (FNN)</topic><topic>Master–slave hand system (MSHS)</topic><topic>Recurrent neural network (RNN)</topic><topic>Tele-operation system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Hui</creatorcontrib><creatorcontrib>Nonami, Kenzo</creatorcontrib><creatorcontrib>Wojtara, Tytus</creatorcontrib><creatorcontrib>Yuasa, Ryohei</creatorcontrib><creatorcontrib>Amano, Shingo</creatorcontrib><creatorcontrib>Waterman, Daniel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Robotics and computer-integrated manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Hui</au><au>Nonami, Kenzo</au><au>Wojtara, Tytus</au><au>Yuasa, Ryohei</au><au>Amano, Shingo</au><au>Waterman, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuro-fuzzy position control of demining tele-operation system based on RNN modeling</atitle><jtitle>Robotics and computer-integrated manufacturing</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>22</volume><issue>1</issue><spage>25</spage><epage>32</epage><pages>25-32</pages><issn>0736-5845</issn><eissn>1879-2537</eissn><abstract>The paper considers the neuro-fuzzy position control of multi-finger robot hand in tele-operation system—an active master–slave hand system (MSHS) for demining. Recently, fuzzy control systems utilizing artificial intelligent techniques are also being actively investigated in robotic area. Neural network with their powerful learning capability are being sought as the basis for many adaptive control systems where on-line adaptation can be implemented. Fuzzy logic on the other hand has been proved to be rather popular in many control system applications providing a rule-base like structure. In this paper, the design and optimization process of fuzzy position controller is supported by learning techniques derived from neural network where a radial basis function (RBF) neural network is implemented to learn fuzzy rules and membership functions with predictor of recurrent neural network (RNN) model. The results of experiment show that based on the predictive capability of RNN model neuro-fuzzy controller with good adaptation and robustness capability can be designed.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.rcim.2005.01.003</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0736-5845
ispartof Robotics and computer-integrated manufacturing, 2006-02, Vol.22 (1), p.25-32
issn 0736-5845
1879-2537
language eng
recordid cdi_proquest_miscellaneous_29456041
source Elsevier ScienceDirect Journals
subjects Fuzzy neural network (FNN)
Master–slave hand system (MSHS)
Recurrent neural network (RNN)
Tele-operation system
title Neuro-fuzzy position control of demining tele-operation system based on RNN modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuro-fuzzy%20position%20control%20of%20demining%20tele-operation%20system%20based%20on%20RNN%20modeling&rft.jtitle=Robotics%20and%20computer-integrated%20manufacturing&rft.au=Shao,%20Hui&rft.date=2006-02-01&rft.volume=22&rft.issue=1&rft.spage=25&rft.epage=32&rft.pages=25-32&rft.issn=0736-5845&rft.eissn=1879-2537&rft_id=info:doi/10.1016/j.rcim.2005.01.003&rft_dat=%3Cproquest_cross%3E29456041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29456041&rft_id=info:pmid/&rft_els_id=S0736584505000189&rfr_iscdi=true