An angle-based optimization approach for 2D finite element mesh smoothing

A new mesh smoothing algorithm that can improve poor-quality meshes, such as meshes with badly shaped elements, is presented. Such meshes are problematic for finite element analysis since the presence of poorly formed mesh elements can reduce the accuracy of the analysis. The new algorithm introduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Finite elements in analysis and design 2006-09, Vol.42 (13), p.1150-1164
Hauptverfasser: Xu, Hongtao, Newman, Timothy S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1164
container_issue 13
container_start_page 1150
container_title Finite elements in analysis and design
container_volume 42
creator Xu, Hongtao
Newman, Timothy S.
description A new mesh smoothing algorithm that can improve poor-quality meshes, such as meshes with badly shaped elements, is presented. Such meshes are problematic for finite element analysis since the presence of poorly formed mesh elements can reduce the accuracy of the analysis. The new algorithm introduced here improves mesh quality by adjusting the position of the mesh's internal nodes based on optimization of a torsion spring system. The Gauss–Newton method is used to optimize this spring system's objective function to obtain the optimal location of each internal node. Demonstration of the improvement offered by application of the algorithm to real meshes is also made.
doi_str_mv 10.1016/j.finel.2006.01.016
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29453221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168874X06000795</els_id><sourcerecordid>1082189335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-f5fb85b1a0c8c82d75a10129aaf23fb80440631c90762b9f32e8a0b629891d073</originalsourceid><addsrcrecordid>eNqFkU1LxDAQhoMouH78Ai-9KF66TpI2TQ4exG8QvCh4C2k6cbO0zZpUQX-90RW8KQwEMs_MOzMvIQcU5hSoOFnOnR-xnzMAMQeaQ2yQGZUNK4Vi9SaZ5R9ZyqZ62iY7KS0BoGaimpHbs7Ew43OPZWsSdkVYTX7wH2byISdWqxiMXRQuxIJdFFnET1hgjwOOUzFgWhRpCGFa-PF5j2w50yfc_3l3yePV5cP5TXl3f317fnZX2orDVLratbJuqQErrWRdU5u8AlPGOMZzCqoKBKdWQSNYqxxnKA20gimpaAcN3yVH6755tpdXTJMefLLY92bE8Jo0U1XNGaMZPP4TpKJpclOlqv9RkIxKxXmdUb5GbQwpRXR6Ff1g4nuG9JcZeqm_zdBfZmigOUSuOvwRMMma3kUzWp9-SyVQqAXP3Omaw3zBN49RJ-txtNj5iHbSXfB_6nwCNqqezA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082189335</pqid></control><display><type>article</type><title>An angle-based optimization approach for 2D finite element mesh smoothing</title><source>Elsevier ScienceDirect Journals</source><creator>Xu, Hongtao ; Newman, Timothy S.</creator><creatorcontrib>Xu, Hongtao ; Newman, Timothy S.</creatorcontrib><description>A new mesh smoothing algorithm that can improve poor-quality meshes, such as meshes with badly shaped elements, is presented. Such meshes are problematic for finite element analysis since the presence of poorly formed mesh elements can reduce the accuracy of the analysis. The new algorithm introduced here improves mesh quality by adjusting the position of the mesh's internal nodes based on optimization of a torsion spring system. The Gauss–Newton method is used to optimize this spring system's objective function to obtain the optimal location of each internal node. Demonstration of the improvement offered by application of the algorithm to real meshes is also made.</description><identifier>ISSN: 0168-874X</identifier><identifier>EISSN: 1872-6925</identifier><identifier>DOI: 10.1016/j.finel.2006.01.016</identifier><identifier>CODEN: FEADEU</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Badly shaped elements ; Computational techniques ; Design engineering ; Exact sciences and technology ; Finite element meshes ; Finite element method ; Finite-element and galerkin methods ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Mathematical methods in physics ; Mesh quality ; Optimization ; Physics ; Smoothing ; Springs ; Torsion</subject><ispartof>Finite elements in analysis and design, 2006-09, Vol.42 (13), p.1150-1164</ispartof><rights>2006 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-f5fb85b1a0c8c82d75a10129aaf23fb80440631c90762b9f32e8a0b629891d073</citedby><cites>FETCH-LOGICAL-c430t-f5fb85b1a0c8c82d75a10129aaf23fb80440631c90762b9f32e8a0b629891d073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0168874X06000795$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18010563$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Hongtao</creatorcontrib><creatorcontrib>Newman, Timothy S.</creatorcontrib><title>An angle-based optimization approach for 2D finite element mesh smoothing</title><title>Finite elements in analysis and design</title><description>A new mesh smoothing algorithm that can improve poor-quality meshes, such as meshes with badly shaped elements, is presented. Such meshes are problematic for finite element analysis since the presence of poorly formed mesh elements can reduce the accuracy of the analysis. The new algorithm introduced here improves mesh quality by adjusting the position of the mesh's internal nodes based on optimization of a torsion spring system. The Gauss–Newton method is used to optimize this spring system's objective function to obtain the optimal location of each internal node. Demonstration of the improvement offered by application of the algorithm to real meshes is also made.</description><subject>Algorithms</subject><subject>Badly shaped elements</subject><subject>Computational techniques</subject><subject>Design engineering</subject><subject>Exact sciences and technology</subject><subject>Finite element meshes</subject><subject>Finite element method</subject><subject>Finite-element and galerkin methods</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mesh quality</subject><subject>Optimization</subject><subject>Physics</subject><subject>Smoothing</subject><subject>Springs</subject><subject>Torsion</subject><issn>0168-874X</issn><issn>1872-6925</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LxDAQhoMouH78Ai-9KF66TpI2TQ4exG8QvCh4C2k6cbO0zZpUQX-90RW8KQwEMs_MOzMvIQcU5hSoOFnOnR-xnzMAMQeaQ2yQGZUNK4Vi9SaZ5R9ZyqZ62iY7KS0BoGaimpHbs7Ew43OPZWsSdkVYTX7wH2byISdWqxiMXRQuxIJdFFnET1hgjwOOUzFgWhRpCGFa-PF5j2w50yfc_3l3yePV5cP5TXl3f317fnZX2orDVLratbJuqQErrWRdU5u8AlPGOMZzCqoKBKdWQSNYqxxnKA20gimpaAcN3yVH6755tpdXTJMefLLY92bE8Jo0U1XNGaMZPP4TpKJpclOlqv9RkIxKxXmdUb5GbQwpRXR6Ff1g4nuG9JcZeqm_zdBfZmigOUSuOvwRMMma3kUzWp9-SyVQqAXP3Omaw3zBN49RJ-txtNj5iHbSXfB_6nwCNqqezA</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Xu, Hongtao</creator><creator>Newman, Timothy S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060901</creationdate><title>An angle-based optimization approach for 2D finite element mesh smoothing</title><author>Xu, Hongtao ; Newman, Timothy S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-f5fb85b1a0c8c82d75a10129aaf23fb80440631c90762b9f32e8a0b629891d073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Badly shaped elements</topic><topic>Computational techniques</topic><topic>Design engineering</topic><topic>Exact sciences and technology</topic><topic>Finite element meshes</topic><topic>Finite element method</topic><topic>Finite-element and galerkin methods</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mesh quality</topic><topic>Optimization</topic><topic>Physics</topic><topic>Smoothing</topic><topic>Springs</topic><topic>Torsion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Hongtao</creatorcontrib><creatorcontrib>Newman, Timothy S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Finite elements in analysis and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Hongtao</au><au>Newman, Timothy S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An angle-based optimization approach for 2D finite element mesh smoothing</atitle><jtitle>Finite elements in analysis and design</jtitle><date>2006-09-01</date><risdate>2006</risdate><volume>42</volume><issue>13</issue><spage>1150</spage><epage>1164</epage><pages>1150-1164</pages><issn>0168-874X</issn><eissn>1872-6925</eissn><coden>FEADEU</coden><abstract>A new mesh smoothing algorithm that can improve poor-quality meshes, such as meshes with badly shaped elements, is presented. Such meshes are problematic for finite element analysis since the presence of poorly formed mesh elements can reduce the accuracy of the analysis. The new algorithm introduced here improves mesh quality by adjusting the position of the mesh's internal nodes based on optimization of a torsion spring system. The Gauss–Newton method is used to optimize this spring system's objective function to obtain the optimal location of each internal node. Demonstration of the improvement offered by application of the algorithm to real meshes is also made.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.finel.2006.01.016</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-874X
ispartof Finite elements in analysis and design, 2006-09, Vol.42 (13), p.1150-1164
issn 0168-874X
1872-6925
language eng
recordid cdi_proquest_miscellaneous_29453221
source Elsevier ScienceDirect Journals
subjects Algorithms
Badly shaped elements
Computational techniques
Design engineering
Exact sciences and technology
Finite element meshes
Finite element method
Finite-element and galerkin methods
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Mathematical methods in physics
Mesh quality
Optimization
Physics
Smoothing
Springs
Torsion
title An angle-based optimization approach for 2D finite element mesh smoothing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20angle-based%20optimization%20approach%20for%202D%20finite%20element%20mesh%20smoothing&rft.jtitle=Finite%20elements%20in%20analysis%20and%20design&rft.au=Xu,%20Hongtao&rft.date=2006-09-01&rft.volume=42&rft.issue=13&rft.spage=1150&rft.epage=1164&rft.pages=1150-1164&rft.issn=0168-874X&rft.eissn=1872-6925&rft.coden=FEADEU&rft_id=info:doi/10.1016/j.finel.2006.01.016&rft_dat=%3Cproquest_cross%3E1082189335%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082189335&rft_id=info:pmid/&rft_els_id=S0168874X06000795&rfr_iscdi=true