Nonlinear multiscale modeling of polymer materials

In this study, a hyperelastic multiscale modeling technique is used to predict elastic properties of polycarbonate and polyimide polymer systems using a set of widely accepted atomistic force fields. The model incorporates molecular simulations and a nonlinear, continuum mechanics-based, constitutiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2007-02, Vol.44 (3), p.1161-1179
Hauptverfasser: Valavala, P.K., Clancy, T.C., Odegard, G.M., Gates, T.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1179
container_issue 3
container_start_page 1161
container_title International journal of solids and structures
container_volume 44
creator Valavala, P.K.
Clancy, T.C.
Odegard, G.M.
Gates, T.S.
description In this study, a hyperelastic multiscale modeling technique is used to predict elastic properties of polycarbonate and polyimide polymer systems using a set of widely accepted atomistic force fields. The model incorporates molecular simulations and a nonlinear, continuum mechanics-based, constitutive formulation that incorporates the behavior of the polymer materials as predicted from molecular simulations. The predicted properties of the polymers using multiple force fields are compared to experimentally measured values. Both static and dynamic molecular simulations are performed using molecular mechanics energy minimizations and molecular dynamics simulation techniques, respectively. The results of this study indicate that static molecular simulation is a useful tool to predict the bulk-level nonlinear mechanical behavior of polymers for finite deformations. It is found that the AMBER force field yields the most accurate predicted mechanical and physical properties of the modeled polymer systems compared to the other force fields used in this study.
doi_str_mv 10.1016/j.ijsolstr.2006.06.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29450648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768306002198</els_id><sourcerecordid>29450648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-51ca0c73e79aea4104ee111378813947a0c5c473b56b9f06c46356971db3ed0a3</originalsourceid><addsrcrecordid>eNqFUE1LxDAUDKLguvoXpCdvXV-aNGluyuIXLHrRc8imr5KSNmvSFfbfm7J6FgYG3ps3zBtCrimsKFBx269cn4JPU1xVAGI1g9ITsqCNVGVFuTglC4AKSikadk4uUuoBgDMFC1K9htG7EU0shr2fXLLGYzGEFvP0swhdsQv-MGBemwmjMz5dkrMuE1798pJ8PD68r5_LzdvTy_p-U1qm6FTW1BqwkqFUBg2nwBEppUw2DWWKy7ysLZdsW4ut6kBYLlgtlKTtlmELhi3JzdF3F8PXHtOkhxwPvTcjhn3SleI1CN5koTgKbQwpRez0LrrBxIOmoOeKdK__KtJzRXpGjrIkd8dDzG98O4w6WYejxdZFtJNug_vP4gc9aHLl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29450648</pqid></control><display><type>article</type><title>Nonlinear multiscale modeling of polymer materials</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Valavala, P.K. ; Clancy, T.C. ; Odegard, G.M. ; Gates, T.S.</creator><creatorcontrib>Valavala, P.K. ; Clancy, T.C. ; Odegard, G.M. ; Gates, T.S.</creatorcontrib><description>In this study, a hyperelastic multiscale modeling technique is used to predict elastic properties of polycarbonate and polyimide polymer systems using a set of widely accepted atomistic force fields. The model incorporates molecular simulations and a nonlinear, continuum mechanics-based, constitutive formulation that incorporates the behavior of the polymer materials as predicted from molecular simulations. The predicted properties of the polymers using multiple force fields are compared to experimentally measured values. Both static and dynamic molecular simulations are performed using molecular mechanics energy minimizations and molecular dynamics simulation techniques, respectively. The results of this study indicate that static molecular simulation is a useful tool to predict the bulk-level nonlinear mechanical behavior of polymers for finite deformations. It is found that the AMBER force field yields the most accurate predicted mechanical and physical properties of the modeled polymer systems compared to the other force fields used in this study.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2006.06.011</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computational chemistry ; Molecular dynamics ; Multiscale modeling ; Nanotechnology ; Polymers</subject><ispartof>International journal of solids and structures, 2007-02, Vol.44 (3), p.1161-1179</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-51ca0c73e79aea4104ee111378813947a0c5c473b56b9f06c46356971db3ed0a3</citedby><cites>FETCH-LOGICAL-c391t-51ca0c73e79aea4104ee111378813947a0c5c473b56b9f06c46356971db3ed0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2006.06.011$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Valavala, P.K.</creatorcontrib><creatorcontrib>Clancy, T.C.</creatorcontrib><creatorcontrib>Odegard, G.M.</creatorcontrib><creatorcontrib>Gates, T.S.</creatorcontrib><title>Nonlinear multiscale modeling of polymer materials</title><title>International journal of solids and structures</title><description>In this study, a hyperelastic multiscale modeling technique is used to predict elastic properties of polycarbonate and polyimide polymer systems using a set of widely accepted atomistic force fields. The model incorporates molecular simulations and a nonlinear, continuum mechanics-based, constitutive formulation that incorporates the behavior of the polymer materials as predicted from molecular simulations. The predicted properties of the polymers using multiple force fields are compared to experimentally measured values. Both static and dynamic molecular simulations are performed using molecular mechanics energy minimizations and molecular dynamics simulation techniques, respectively. The results of this study indicate that static molecular simulation is a useful tool to predict the bulk-level nonlinear mechanical behavior of polymers for finite deformations. It is found that the AMBER force field yields the most accurate predicted mechanical and physical properties of the modeled polymer systems compared to the other force fields used in this study.</description><subject>Computational chemistry</subject><subject>Molecular dynamics</subject><subject>Multiscale modeling</subject><subject>Nanotechnology</subject><subject>Polymers</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAUDKLguvoXpCdvXV-aNGluyuIXLHrRc8imr5KSNmvSFfbfm7J6FgYG3ps3zBtCrimsKFBx269cn4JPU1xVAGI1g9ITsqCNVGVFuTglC4AKSikadk4uUuoBgDMFC1K9htG7EU0shr2fXLLGYzGEFvP0swhdsQv-MGBemwmjMz5dkrMuE1798pJ8PD68r5_LzdvTy_p-U1qm6FTW1BqwkqFUBg2nwBEppUw2DWWKy7ysLZdsW4ut6kBYLlgtlKTtlmELhi3JzdF3F8PXHtOkhxwPvTcjhn3SleI1CN5koTgKbQwpRez0LrrBxIOmoOeKdK__KtJzRXpGjrIkd8dDzG98O4w6WYejxdZFtJNug_vP4gc9aHLl</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Valavala, P.K.</creator><creator>Clancy, T.C.</creator><creator>Odegard, G.M.</creator><creator>Gates, T.S.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20070201</creationdate><title>Nonlinear multiscale modeling of polymer materials</title><author>Valavala, P.K. ; Clancy, T.C. ; Odegard, G.M. ; Gates, T.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-51ca0c73e79aea4104ee111378813947a0c5c473b56b9f06c46356971db3ed0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computational chemistry</topic><topic>Molecular dynamics</topic><topic>Multiscale modeling</topic><topic>Nanotechnology</topic><topic>Polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valavala, P.K.</creatorcontrib><creatorcontrib>Clancy, T.C.</creatorcontrib><creatorcontrib>Odegard, G.M.</creatorcontrib><creatorcontrib>Gates, T.S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valavala, P.K.</au><au>Clancy, T.C.</au><au>Odegard, G.M.</au><au>Gates, T.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear multiscale modeling of polymer materials</atitle><jtitle>International journal of solids and structures</jtitle><date>2007-02-01</date><risdate>2007</risdate><volume>44</volume><issue>3</issue><spage>1161</spage><epage>1179</epage><pages>1161-1179</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>In this study, a hyperelastic multiscale modeling technique is used to predict elastic properties of polycarbonate and polyimide polymer systems using a set of widely accepted atomistic force fields. The model incorporates molecular simulations and a nonlinear, continuum mechanics-based, constitutive formulation that incorporates the behavior of the polymer materials as predicted from molecular simulations. The predicted properties of the polymers using multiple force fields are compared to experimentally measured values. Both static and dynamic molecular simulations are performed using molecular mechanics energy minimizations and molecular dynamics simulation techniques, respectively. The results of this study indicate that static molecular simulation is a useful tool to predict the bulk-level nonlinear mechanical behavior of polymers for finite deformations. It is found that the AMBER force field yields the most accurate predicted mechanical and physical properties of the modeled polymer systems compared to the other force fields used in this study.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2006.06.011</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2007-02, Vol.44 (3), p.1161-1179
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_miscellaneous_29450648
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Computational chemistry
Molecular dynamics
Multiscale modeling
Nanotechnology
Polymers
title Nonlinear multiscale modeling of polymer materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20multiscale%20modeling%20of%20polymer%20materials&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Valavala,%20P.K.&rft.date=2007-02-01&rft.volume=44&rft.issue=3&rft.spage=1161&rft.epage=1179&rft.pages=1161-1179&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2006.06.011&rft_dat=%3Cproquest_cross%3E29450648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29450648&rft_id=info:pmid/&rft_els_id=S0020768306002198&rfr_iscdi=true