Nonlinear multiscale modeling of polymer materials
In this study, a hyperelastic multiscale modeling technique is used to predict elastic properties of polycarbonate and polyimide polymer systems using a set of widely accepted atomistic force fields. The model incorporates molecular simulations and a nonlinear, continuum mechanics-based, constitutiv...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2007-02, Vol.44 (3), p.1161-1179 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1179 |
---|---|
container_issue | 3 |
container_start_page | 1161 |
container_title | International journal of solids and structures |
container_volume | 44 |
creator | Valavala, P.K. Clancy, T.C. Odegard, G.M. Gates, T.S. |
description | In this study, a hyperelastic multiscale modeling technique is used to predict elastic properties of polycarbonate and polyimide polymer systems using a set of widely accepted atomistic force fields. The model incorporates molecular simulations and a nonlinear, continuum mechanics-based, constitutive formulation that incorporates the behavior of the polymer materials as predicted from molecular simulations. The predicted properties of the polymers using multiple force fields are compared to experimentally measured values. Both static and dynamic molecular simulations are performed using molecular mechanics energy minimizations and molecular dynamics simulation techniques, respectively. The results of this study indicate that static molecular simulation is a useful tool to predict the bulk-level nonlinear mechanical behavior of polymers for finite deformations. It is found that the AMBER force field yields the most accurate predicted mechanical and physical properties of the modeled polymer systems compared to the other force fields used in this study. |
doi_str_mv | 10.1016/j.ijsolstr.2006.06.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29450648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768306002198</els_id><sourcerecordid>29450648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-51ca0c73e79aea4104ee111378813947a0c5c473b56b9f06c46356971db3ed0a3</originalsourceid><addsrcrecordid>eNqFUE1LxDAUDKLguvoXpCdvXV-aNGluyuIXLHrRc8imr5KSNmvSFfbfm7J6FgYG3ps3zBtCrimsKFBx269cn4JPU1xVAGI1g9ITsqCNVGVFuTglC4AKSikadk4uUuoBgDMFC1K9htG7EU0shr2fXLLGYzGEFvP0swhdsQv-MGBemwmjMz5dkrMuE1798pJ8PD68r5_LzdvTy_p-U1qm6FTW1BqwkqFUBg2nwBEppUw2DWWKy7ysLZdsW4ut6kBYLlgtlKTtlmELhi3JzdF3F8PXHtOkhxwPvTcjhn3SleI1CN5koTgKbQwpRez0LrrBxIOmoOeKdK__KtJzRXpGjrIkd8dDzG98O4w6WYejxdZFtJNug_vP4gc9aHLl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29450648</pqid></control><display><type>article</type><title>Nonlinear multiscale modeling of polymer materials</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Valavala, P.K. ; Clancy, T.C. ; Odegard, G.M. ; Gates, T.S.</creator><creatorcontrib>Valavala, P.K. ; Clancy, T.C. ; Odegard, G.M. ; Gates, T.S.</creatorcontrib><description>In this study, a hyperelastic multiscale modeling technique is used to predict elastic properties of polycarbonate and polyimide polymer systems using a set of widely accepted atomistic force fields. The model incorporates molecular simulations and a nonlinear, continuum mechanics-based, constitutive formulation that incorporates the behavior of the polymer materials as predicted from molecular simulations. The predicted properties of the polymers using multiple force fields are compared to experimentally measured values. Both static and dynamic molecular simulations are performed using molecular mechanics energy minimizations and molecular dynamics simulation techniques, respectively. The results of this study indicate that static molecular simulation is a useful tool to predict the bulk-level nonlinear mechanical behavior of polymers for finite deformations. It is found that the AMBER force field yields the most accurate predicted mechanical and physical properties of the modeled polymer systems compared to the other force fields used in this study.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2006.06.011</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computational chemistry ; Molecular dynamics ; Multiscale modeling ; Nanotechnology ; Polymers</subject><ispartof>International journal of solids and structures, 2007-02, Vol.44 (3), p.1161-1179</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-51ca0c73e79aea4104ee111378813947a0c5c473b56b9f06c46356971db3ed0a3</citedby><cites>FETCH-LOGICAL-c391t-51ca0c73e79aea4104ee111378813947a0c5c473b56b9f06c46356971db3ed0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2006.06.011$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Valavala, P.K.</creatorcontrib><creatorcontrib>Clancy, T.C.</creatorcontrib><creatorcontrib>Odegard, G.M.</creatorcontrib><creatorcontrib>Gates, T.S.</creatorcontrib><title>Nonlinear multiscale modeling of polymer materials</title><title>International journal of solids and structures</title><description>In this study, a hyperelastic multiscale modeling technique is used to predict elastic properties of polycarbonate and polyimide polymer systems using a set of widely accepted atomistic force fields. The model incorporates molecular simulations and a nonlinear, continuum mechanics-based, constitutive formulation that incorporates the behavior of the polymer materials as predicted from molecular simulations. The predicted properties of the polymers using multiple force fields are compared to experimentally measured values. Both static and dynamic molecular simulations are performed using molecular mechanics energy minimizations and molecular dynamics simulation techniques, respectively. The results of this study indicate that static molecular simulation is a useful tool to predict the bulk-level nonlinear mechanical behavior of polymers for finite deformations. It is found that the AMBER force field yields the most accurate predicted mechanical and physical properties of the modeled polymer systems compared to the other force fields used in this study.</description><subject>Computational chemistry</subject><subject>Molecular dynamics</subject><subject>Multiscale modeling</subject><subject>Nanotechnology</subject><subject>Polymers</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAUDKLguvoXpCdvXV-aNGluyuIXLHrRc8imr5KSNmvSFfbfm7J6FgYG3ps3zBtCrimsKFBx269cn4JPU1xVAGI1g9ITsqCNVGVFuTglC4AKSikadk4uUuoBgDMFC1K9htG7EU0shr2fXLLGYzGEFvP0swhdsQv-MGBemwmjMz5dkrMuE1798pJ8PD68r5_LzdvTy_p-U1qm6FTW1BqwkqFUBg2nwBEppUw2DWWKy7ysLZdsW4ut6kBYLlgtlKTtlmELhi3JzdF3F8PXHtOkhxwPvTcjhn3SleI1CN5koTgKbQwpRez0LrrBxIOmoOeKdK__KtJzRXpGjrIkd8dDzG98O4w6WYejxdZFtJNug_vP4gc9aHLl</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Valavala, P.K.</creator><creator>Clancy, T.C.</creator><creator>Odegard, G.M.</creator><creator>Gates, T.S.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20070201</creationdate><title>Nonlinear multiscale modeling of polymer materials</title><author>Valavala, P.K. ; Clancy, T.C. ; Odegard, G.M. ; Gates, T.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-51ca0c73e79aea4104ee111378813947a0c5c473b56b9f06c46356971db3ed0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computational chemistry</topic><topic>Molecular dynamics</topic><topic>Multiscale modeling</topic><topic>Nanotechnology</topic><topic>Polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valavala, P.K.</creatorcontrib><creatorcontrib>Clancy, T.C.</creatorcontrib><creatorcontrib>Odegard, G.M.</creatorcontrib><creatorcontrib>Gates, T.S.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valavala, P.K.</au><au>Clancy, T.C.</au><au>Odegard, G.M.</au><au>Gates, T.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear multiscale modeling of polymer materials</atitle><jtitle>International journal of solids and structures</jtitle><date>2007-02-01</date><risdate>2007</risdate><volume>44</volume><issue>3</issue><spage>1161</spage><epage>1179</epage><pages>1161-1179</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>In this study, a hyperelastic multiscale modeling technique is used to predict elastic properties of polycarbonate and polyimide polymer systems using a set of widely accepted atomistic force fields. The model incorporates molecular simulations and a nonlinear, continuum mechanics-based, constitutive formulation that incorporates the behavior of the polymer materials as predicted from molecular simulations. The predicted properties of the polymers using multiple force fields are compared to experimentally measured values. Both static and dynamic molecular simulations are performed using molecular mechanics energy minimizations and molecular dynamics simulation techniques, respectively. The results of this study indicate that static molecular simulation is a useful tool to predict the bulk-level nonlinear mechanical behavior of polymers for finite deformations. It is found that the AMBER force field yields the most accurate predicted mechanical and physical properties of the modeled polymer systems compared to the other force fields used in this study.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2006.06.011</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2007-02, Vol.44 (3), p.1161-1179 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_proquest_miscellaneous_29450648 |
source | ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | Computational chemistry Molecular dynamics Multiscale modeling Nanotechnology Polymers |
title | Nonlinear multiscale modeling of polymer materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20multiscale%20modeling%20of%20polymer%20materials&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Valavala,%20P.K.&rft.date=2007-02-01&rft.volume=44&rft.issue=3&rft.spage=1161&rft.epage=1179&rft.pages=1161-1179&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2006.06.011&rft_dat=%3Cproquest_cross%3E29450648%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29450648&rft_id=info:pmid/&rft_els_id=S0020768306002198&rfr_iscdi=true |