In-Plane and Out-Of-Plane Thermal Conductivity of Silicon Thin Films Predicted by Molecular Dynamics
The thermal conductivity of silicon thin films is predicted in the directions parallel and perpendicular to the film surfaces (in-plane and out-of-plane, respectively) using equilibrium molecular dynamics, the Green-Kubo relation, and the Stillinger-Weber interatomic potential. Three different bound...
Gespeichert in:
Veröffentlicht in: | Journal of heat transfer 2006-11, Vol.128 (11), p.1114-1121 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1121 |
---|---|
container_issue | 11 |
container_start_page | 1114 |
container_title | Journal of heat transfer |
container_volume | 128 |
creator | Gomes, Carlos J. Madrid, Marcela Goicochea, Javier V. Amon, Cristina H. |
description | The thermal conductivity of silicon thin films is predicted in the directions parallel and perpendicular to the film surfaces (in-plane and out-of-plane, respectively) using equilibrium molecular dynamics, the Green-Kubo relation, and the Stillinger-Weber interatomic potential. Three different boundary conditions are considered along the film surfaces: frozen atoms, surface potential, and free boundaries. Film thicknesses range from 2to217nm and temperatures from 300to1000K. The relation between the bulk phonon mean free path (Λ) and the film thickness (ds) spans from the ballistic regime (Λ⪢ds) at 300K to the diffusive, bulk-like regime (Λ⪡ds) at 1000K. When the film is thin enough, the in-plane and out-of-plane thermal conductivity differ from each other and decrease with decreasing film thickness, as a consequence of the scattering of phonons with the film boundaries. The in-plane thermal conductivity follows the trend observed experimentally at 300K. In the ballistic limit, in accordance with the kinetic and phonon radiative transfer theories, the predicted out-of-plane thermal conductivity varies linearly with the film thickness, and is temperature-independent for temperatures near or above the Debye’s temperature. |
doi_str_mv | 10.1115/1.2352781 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29450065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29450065</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-f286eddfb0e4c952549b0f9e8827061b73ec2a5eb8f8654143c4d073fcecf3043</originalsourceid><addsrcrecordid>eNpFkM9LwzAUx4MoOKcHz15yUfDQmZ9tepTpdDDZwHkOaZpgRprOpBX639uxgacH732-38f3C8AtRjOMMX_CM0I5KQQ-AxPMichEyeg5mCBESIaZwJfgKqUdQphSVk5AvQzZxqtgoAo1XPddtranxfbbxEZ5OG9D3evO_bpugK2Fn8473Ybx7gJcON8kuImmdrozNawG-NF6o3uvInwZgmqcTtfgwiqfzM1pTsHX4nU7f89W67fl_HmVKVrkXWaJyE1d2woZpktOOCsrZEsjBClQjquCGk0UN5WwIucMM6pZjQpqtdGWIkan4OHou4_tT29SJxuXtPGHOG2fJCkZRyjnI_h4BHVsU4rGyn10jYqDxEgeepRYnnoc2fuTqUpaeRtV0C79CwRlDPHD87sjp1Jj5K7tYxizSsZomWP6B1O7ekk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29450065</pqid></control><display><type>article</type><title>In-Plane and Out-Of-Plane Thermal Conductivity of Silicon Thin Films Predicted by Molecular Dynamics</title><source>ASME Transactions Journals (Current)</source><creator>Gomes, Carlos J. ; Madrid, Marcela ; Goicochea, Javier V. ; Amon, Cristina H.</creator><creatorcontrib>Gomes, Carlos J. ; Madrid, Marcela ; Goicochea, Javier V. ; Amon, Cristina H.</creatorcontrib><description>The thermal conductivity of silicon thin films is predicted in the directions parallel and perpendicular to the film surfaces (in-plane and out-of-plane, respectively) using equilibrium molecular dynamics, the Green-Kubo relation, and the Stillinger-Weber interatomic potential. Three different boundary conditions are considered along the film surfaces: frozen atoms, surface potential, and free boundaries. Film thicknesses range from 2to217nm and temperatures from 300to1000K. The relation between the bulk phonon mean free path (Λ) and the film thickness (ds) spans from the ballistic regime (Λ⪢ds) at 300K to the diffusive, bulk-like regime (Λ⪡ds) at 1000K. When the film is thin enough, the in-plane and out-of-plane thermal conductivity differ from each other and decrease with decreasing film thickness, as a consequence of the scattering of phonons with the film boundaries. The in-plane thermal conductivity follows the trend observed experimentally at 300K. In the ballistic limit, in accordance with the kinetic and phonon radiative transfer theories, the predicted out-of-plane thermal conductivity varies linearly with the film thickness, and is temperature-independent for temperatures near or above the Debye’s temperature.</description><identifier>ISSN: 0022-1481</identifier><identifier>EISSN: 1528-8943</identifier><identifier>DOI: 10.1115/1.2352781</identifier><identifier>CODEN: JHTRAO</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Applied sciences ; Electronics ; Exact sciences and technology ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Transistors</subject><ispartof>Journal of heat transfer, 2006-11, Vol.128 (11), p.1114-1121</ispartof><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-f286eddfb0e4c952549b0f9e8827061b73ec2a5eb8f8654143c4d073fcecf3043</citedby><cites>FETCH-LOGICAL-a376t-f286eddfb0e4c952549b0f9e8827061b73ec2a5eb8f8654143c4d073fcecf3043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38520</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18344054$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomes, Carlos J.</creatorcontrib><creatorcontrib>Madrid, Marcela</creatorcontrib><creatorcontrib>Goicochea, Javier V.</creatorcontrib><creatorcontrib>Amon, Cristina H.</creatorcontrib><title>In-Plane and Out-Of-Plane Thermal Conductivity of Silicon Thin Films Predicted by Molecular Dynamics</title><title>Journal of heat transfer</title><addtitle>J. Heat Transfer</addtitle><description>The thermal conductivity of silicon thin films is predicted in the directions parallel and perpendicular to the film surfaces (in-plane and out-of-plane, respectively) using equilibrium molecular dynamics, the Green-Kubo relation, and the Stillinger-Weber interatomic potential. Three different boundary conditions are considered along the film surfaces: frozen atoms, surface potential, and free boundaries. Film thicknesses range from 2to217nm and temperatures from 300to1000K. The relation between the bulk phonon mean free path (Λ) and the film thickness (ds) spans from the ballistic regime (Λ⪢ds) at 300K to the diffusive, bulk-like regime (Λ⪡ds) at 1000K. When the film is thin enough, the in-plane and out-of-plane thermal conductivity differ from each other and decrease with decreasing film thickness, as a consequence of the scattering of phonons with the film boundaries. The in-plane thermal conductivity follows the trend observed experimentally at 300K. In the ballistic limit, in accordance with the kinetic and phonon radiative transfer theories, the predicted out-of-plane thermal conductivity varies linearly with the film thickness, and is temperature-independent for temperatures near or above the Debye’s temperature.</description><subject>Applied sciences</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Transistors</subject><issn>0022-1481</issn><issn>1528-8943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkM9LwzAUx4MoOKcHz15yUfDQmZ9tepTpdDDZwHkOaZpgRprOpBX639uxgacH732-38f3C8AtRjOMMX_CM0I5KQQ-AxPMichEyeg5mCBESIaZwJfgKqUdQphSVk5AvQzZxqtgoAo1XPddtranxfbbxEZ5OG9D3evO_bpugK2Fn8473Ybx7gJcON8kuImmdrozNawG-NF6o3uvInwZgmqcTtfgwiqfzM1pTsHX4nU7f89W67fl_HmVKVrkXWaJyE1d2woZpktOOCsrZEsjBClQjquCGk0UN5WwIucMM6pZjQpqtdGWIkan4OHou4_tT29SJxuXtPGHOG2fJCkZRyjnI_h4BHVsU4rGyn10jYqDxEgeepRYnnoc2fuTqUpaeRtV0C79CwRlDPHD87sjp1Jj5K7tYxizSsZomWP6B1O7ekk</recordid><startdate>20061101</startdate><enddate>20061101</enddate><creator>Gomes, Carlos J.</creator><creator>Madrid, Marcela</creator><creator>Goicochea, Javier V.</creator><creator>Amon, Cristina H.</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20061101</creationdate><title>In-Plane and Out-Of-Plane Thermal Conductivity of Silicon Thin Films Predicted by Molecular Dynamics</title><author>Gomes, Carlos J. ; Madrid, Marcela ; Goicochea, Javier V. ; Amon, Cristina H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-f286eddfb0e4c952549b0f9e8827061b73ec2a5eb8f8654143c4d073fcecf3043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomes, Carlos J.</creatorcontrib><creatorcontrib>Madrid, Marcela</creatorcontrib><creatorcontrib>Goicochea, Javier V.</creatorcontrib><creatorcontrib>Amon, Cristina H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of heat transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomes, Carlos J.</au><au>Madrid, Marcela</au><au>Goicochea, Javier V.</au><au>Amon, Cristina H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-Plane and Out-Of-Plane Thermal Conductivity of Silicon Thin Films Predicted by Molecular Dynamics</atitle><jtitle>Journal of heat transfer</jtitle><stitle>J. Heat Transfer</stitle><date>2006-11-01</date><risdate>2006</risdate><volume>128</volume><issue>11</issue><spage>1114</spage><epage>1121</epage><pages>1114-1121</pages><issn>0022-1481</issn><eissn>1528-8943</eissn><coden>JHTRAO</coden><abstract>The thermal conductivity of silicon thin films is predicted in the directions parallel and perpendicular to the film surfaces (in-plane and out-of-plane, respectively) using equilibrium molecular dynamics, the Green-Kubo relation, and the Stillinger-Weber interatomic potential. Three different boundary conditions are considered along the film surfaces: frozen atoms, surface potential, and free boundaries. Film thicknesses range from 2to217nm and temperatures from 300to1000K. The relation between the bulk phonon mean free path (Λ) and the film thickness (ds) spans from the ballistic regime (Λ⪢ds) at 300K to the diffusive, bulk-like regime (Λ⪡ds) at 1000K. When the film is thin enough, the in-plane and out-of-plane thermal conductivity differ from each other and decrease with decreasing film thickness, as a consequence of the scattering of phonons with the film boundaries. The in-plane thermal conductivity follows the trend observed experimentally at 300K. In the ballistic limit, in accordance with the kinetic and phonon radiative transfer theories, the predicted out-of-plane thermal conductivity varies linearly with the film thickness, and is temperature-independent for temperatures near or above the Debye’s temperature.</abstract><cop>New York, NY</cop><pub>ASME</pub><doi>10.1115/1.2352781</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1481 |
ispartof | Journal of heat transfer, 2006-11, Vol.128 (11), p.1114-1121 |
issn | 0022-1481 1528-8943 |
language | eng |
recordid | cdi_proquest_miscellaneous_29450065 |
source | ASME Transactions Journals (Current) |
subjects | Applied sciences Electronics Exact sciences and technology Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Transistors |
title | In-Plane and Out-Of-Plane Thermal Conductivity of Silicon Thin Films Predicted by Molecular Dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-Plane%20and%20Out-Of-Plane%20Thermal%20Conductivity%20of%20Silicon%20Thin%20Films%20Predicted%20by%20Molecular%20Dynamics&rft.jtitle=Journal%20of%20heat%20transfer&rft.au=Gomes,%20Carlos%20J.&rft.date=2006-11-01&rft.volume=128&rft.issue=11&rft.spage=1114&rft.epage=1121&rft.pages=1114-1121&rft.issn=0022-1481&rft.eissn=1528-8943&rft.coden=JHTRAO&rft_id=info:doi/10.1115/1.2352781&rft_dat=%3Cproquest_cross%3E29450065%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29450065&rft_id=info:pmid/&rfr_iscdi=true |