Supramolecular Ordered Organic Thin Films for Nonlinear Optical and Optoelectronic Applications

For second‐order nonlinear optics, a supramolecularly ordered non‐centrosymmetric structure is required. Additionally, well‐ordered organic semiconducting thin films possess superior electronic properties compared to their amorphous counterparts. Herein, we firstly highlight that the design of nonli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2006-01, Vol.16 (2), p.180-188
Hauptverfasser: Khan, R. U. A., Kwon, O-P., Tapponnier, A., Rashid, A. N., Günter, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue 2
container_start_page 180
container_title Advanced functional materials
container_volume 16
creator Khan, R. U. A.
Kwon, O-P.
Tapponnier, A.
Rashid, A. N.
Günter, P.
description For second‐order nonlinear optics, a supramolecularly ordered non‐centrosymmetric structure is required. Additionally, well‐ordered organic semiconducting thin films possess superior electronic properties compared to their amorphous counterparts. Herein, we firstly highlight that the design of nonlinear molecules and their functionalization for good molecular orientation (e.g., H‐bonding) is an important method in which to induce supramolecular ordering during subsequent growth. Secondly, we demonstrate a range of growth strategies (e.g., oblique‐incidence molecular beam deposition, hot‐wall deposition) for the growth of molecularly ordered thin films. Thirdly, we discuss various organic supramolecularly ordered material systems (4‐[trans(pyridin‐4‐ylvinyl)] benzoic acid, 5‐bromo‐5′‐formyl‐2,2′‐bithiophene‐4‐nitrophenyl hydrazone, tris(8‐hydroxyquinoline) aluminum) and observe the effects of molecular orientation on their nonlinear optical and optoelectronic properties. Supramolecular self‐assembly of organic molecules is essential for second‐order nonlinear optics and highly desirable for organic electronics. A range of molecular‐design and growth strategies for achieving ordered organic thin films (see Figure, width = 20 nm) is outlined, and their nonlinear optical and optoelectronic properties are described.
doi_str_mv 10.1002/adfm.200500225
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29449903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29449903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3585-4f8ef4328d3100ee01e4fc938bf8c76f85c716961cb764be468dc659a70c2a8f3</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhSMEEqWwMmdiS7HjxHHGqtCCKK2gRbBZrnMGgxMHOxX035MoqGJjune69z3pXhCcYzTCCMWXolDlKEYobZc4PQgGmGIaERSzw73GL8fBiffvCOEsI8kg4Ktt7URpDcitES5cugIcFO18FZWW4fpNV-FUm9KHyrpwYSujK-iMdaOlMKGoik5baBMaZztmXNemvTXaVv40OFLCeDj7ncPgaXq9ntxE8-XsdjKeR5KkLI0SxUAlJGYFaX8BQBgSJXPCNorJjCqWygzTnGK5yWiygYSyQtI0FxmSsWCKDIOLPrd29nMLvuGl9hKMERXYredxniR5jkhrHPVG6az3DhSvnS6F23GMeNcj73rk-x5bIO-BL21g94-bj6-m93_ZqGe1b-B7zwr3wWlGspQ_L2b8gT2u0ORuxRn5AbYkh2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29449903</pqid></control><display><type>article</type><title>Supramolecular Ordered Organic Thin Films for Nonlinear Optical and Optoelectronic Applications</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Khan, R. U. A. ; Kwon, O-P. ; Tapponnier, A. ; Rashid, A. N. ; Günter, P.</creator><creatorcontrib>Khan, R. U. A. ; Kwon, O-P. ; Tapponnier, A. ; Rashid, A. N. ; Günter, P.</creatorcontrib><description>For second‐order nonlinear optics, a supramolecularly ordered non‐centrosymmetric structure is required. Additionally, well‐ordered organic semiconducting thin films possess superior electronic properties compared to their amorphous counterparts. Herein, we firstly highlight that the design of nonlinear molecules and their functionalization for good molecular orientation (e.g., H‐bonding) is an important method in which to induce supramolecular ordering during subsequent growth. Secondly, we demonstrate a range of growth strategies (e.g., oblique‐incidence molecular beam deposition, hot‐wall deposition) for the growth of molecularly ordered thin films. Thirdly, we discuss various organic supramolecularly ordered material systems (4‐[trans(pyridin‐4‐ylvinyl)] benzoic acid, 5‐bromo‐5′‐formyl‐2,2′‐bithiophene‐4‐nitrophenyl hydrazone, tris(8‐hydroxyquinoline) aluminum) and observe the effects of molecular orientation on their nonlinear optical and optoelectronic properties. Supramolecular self‐assembly of organic molecules is essential for second‐order nonlinear optics and highly desirable for organic electronics. A range of molecular‐design and growth strategies for achieving ordered organic thin films (see Figure, width = 20 nm) is outlined, and their nonlinear optical and optoelectronic properties are described.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.200500225</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Nonlinear optical materials ; Optoelectronics ; organic ; Thin films ; Thin films, organic</subject><ispartof>Advanced functional materials, 2006-01, Vol.16 (2), p.180-188</ispartof><rights>Copyright © 2006 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3585-4f8ef4328d3100ee01e4fc938bf8c76f85c716961cb764be468dc659a70c2a8f3</citedby><cites>FETCH-LOGICAL-c3585-4f8ef4328d3100ee01e4fc938bf8c76f85c716961cb764be468dc659a70c2a8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.200500225$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45551</link.rule.ids></links><search><creatorcontrib>Khan, R. U. A.</creatorcontrib><creatorcontrib>Kwon, O-P.</creatorcontrib><creatorcontrib>Tapponnier, A.</creatorcontrib><creatorcontrib>Rashid, A. N.</creatorcontrib><creatorcontrib>Günter, P.</creatorcontrib><title>Supramolecular Ordered Organic Thin Films for Nonlinear Optical and Optoelectronic Applications</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>For second‐order nonlinear optics, a supramolecularly ordered non‐centrosymmetric structure is required. Additionally, well‐ordered organic semiconducting thin films possess superior electronic properties compared to their amorphous counterparts. Herein, we firstly highlight that the design of nonlinear molecules and their functionalization for good molecular orientation (e.g., H‐bonding) is an important method in which to induce supramolecular ordering during subsequent growth. Secondly, we demonstrate a range of growth strategies (e.g., oblique‐incidence molecular beam deposition, hot‐wall deposition) for the growth of molecularly ordered thin films. Thirdly, we discuss various organic supramolecularly ordered material systems (4‐[trans(pyridin‐4‐ylvinyl)] benzoic acid, 5‐bromo‐5′‐formyl‐2,2′‐bithiophene‐4‐nitrophenyl hydrazone, tris(8‐hydroxyquinoline) aluminum) and observe the effects of molecular orientation on their nonlinear optical and optoelectronic properties. Supramolecular self‐assembly of organic molecules is essential for second‐order nonlinear optics and highly desirable for organic electronics. A range of molecular‐design and growth strategies for achieving ordered organic thin films (see Figure, width = 20 nm) is outlined, and their nonlinear optical and optoelectronic properties are described.</description><subject>Nonlinear optical materials</subject><subject>Optoelectronics</subject><subject>organic</subject><subject>Thin films</subject><subject>Thin films, organic</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhSMEEqWwMmdiS7HjxHHGqtCCKK2gRbBZrnMGgxMHOxX035MoqGJjune69z3pXhCcYzTCCMWXolDlKEYobZc4PQgGmGIaERSzw73GL8fBiffvCOEsI8kg4Ktt7URpDcitES5cugIcFO18FZWW4fpNV-FUm9KHyrpwYSujK-iMdaOlMKGoik5baBMaZztmXNemvTXaVv40OFLCeDj7ncPgaXq9ntxE8-XsdjKeR5KkLI0SxUAlJGYFaX8BQBgSJXPCNorJjCqWygzTnGK5yWiygYSyQtI0FxmSsWCKDIOLPrd29nMLvuGl9hKMERXYredxniR5jkhrHPVG6az3DhSvnS6F23GMeNcj73rk-x5bIO-BL21g94-bj6-m93_ZqGe1b-B7zwr3wWlGspQ_L2b8gT2u0ORuxRn5AbYkh2k</recordid><startdate>20060119</startdate><enddate>20060119</enddate><creator>Khan, R. U. A.</creator><creator>Kwon, O-P.</creator><creator>Tapponnier, A.</creator><creator>Rashid, A. N.</creator><creator>Günter, P.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20060119</creationdate><title>Supramolecular Ordered Organic Thin Films for Nonlinear Optical and Optoelectronic Applications</title><author>Khan, R. U. A. ; Kwon, O-P. ; Tapponnier, A. ; Rashid, A. N. ; Günter, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3585-4f8ef4328d3100ee01e4fc938bf8c76f85c716961cb764be468dc659a70c2a8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Nonlinear optical materials</topic><topic>Optoelectronics</topic><topic>organic</topic><topic>Thin films</topic><topic>Thin films, organic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, R. U. A.</creatorcontrib><creatorcontrib>Kwon, O-P.</creatorcontrib><creatorcontrib>Tapponnier, A.</creatorcontrib><creatorcontrib>Rashid, A. N.</creatorcontrib><creatorcontrib>Günter, P.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, R. U. A.</au><au>Kwon, O-P.</au><au>Tapponnier, A.</au><au>Rashid, A. N.</au><au>Günter, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supramolecular Ordered Organic Thin Films for Nonlinear Optical and Optoelectronic Applications</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2006-01-19</date><risdate>2006</risdate><volume>16</volume><issue>2</issue><spage>180</spage><epage>188</epage><pages>180-188</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>For second‐order nonlinear optics, a supramolecularly ordered non‐centrosymmetric structure is required. Additionally, well‐ordered organic semiconducting thin films possess superior electronic properties compared to their amorphous counterparts. Herein, we firstly highlight that the design of nonlinear molecules and their functionalization for good molecular orientation (e.g., H‐bonding) is an important method in which to induce supramolecular ordering during subsequent growth. Secondly, we demonstrate a range of growth strategies (e.g., oblique‐incidence molecular beam deposition, hot‐wall deposition) for the growth of molecularly ordered thin films. Thirdly, we discuss various organic supramolecularly ordered material systems (4‐[trans(pyridin‐4‐ylvinyl)] benzoic acid, 5‐bromo‐5′‐formyl‐2,2′‐bithiophene‐4‐nitrophenyl hydrazone, tris(8‐hydroxyquinoline) aluminum) and observe the effects of molecular orientation on their nonlinear optical and optoelectronic properties. Supramolecular self‐assembly of organic molecules is essential for second‐order nonlinear optics and highly desirable for organic electronics. A range of molecular‐design and growth strategies for achieving ordered organic thin films (see Figure, width = 20 nm) is outlined, and their nonlinear optical and optoelectronic properties are described.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.200500225</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2006-01, Vol.16 (2), p.180-188
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_29449903
source Wiley Online Library Journals Frontfile Complete
subjects Nonlinear optical materials
Optoelectronics
organic
Thin films
Thin films, organic
title Supramolecular Ordered Organic Thin Films for Nonlinear Optical and Optoelectronic Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supramolecular%20Ordered%20Organic%20Thin%20Films%20for%20Nonlinear%20Optical%20and%20Optoelectronic%20Applications&rft.jtitle=Advanced%20functional%20materials&rft.au=Khan,%20R.%E2%80%89U.%E2%80%89A.&rft.date=2006-01-19&rft.volume=16&rft.issue=2&rft.spage=180&rft.epage=188&rft.pages=180-188&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.200500225&rft_dat=%3Cproquest_cross%3E29449903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29449903&rft_id=info:pmid/&rfr_iscdi=true