Interactive evolutionary computation in process engineering

In practical system identification, process optimization and controller design, it is often desirable to simultaneously handle several objectives and constraints. In some cases, these objectives and constraints are non-commensurable and they are not explicitly/mathematically available. This paper pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & chemical engineering 2005-06, Vol.29 (7), p.1591-1597
Hauptverfasser: Madar, Janos, Abonyi, Janos, Szeifert, Ferenc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1597
container_issue 7
container_start_page 1591
container_title Computers & chemical engineering
container_volume 29
creator Madar, Janos
Abonyi, Janos
Szeifert, Ferenc
description In practical system identification, process optimization and controller design, it is often desirable to simultaneously handle several objectives and constraints. In some cases, these objectives and constraints are non-commensurable and they are not explicitly/mathematically available. This paper proposes a new subjective optimization method based on interactive evolutionary computation (IEC) to handle these problems. IEC is an evolutionary algorithm whose fitness function is provided by human users. The whole approach has been implemented in MATLAB (EAsy-IEC Toolbox) and applied to two case-studies: tuning a Model Predictive Controller and temperature profile design of a batch beer fermenter. The results show that IEC is an efficient and comfortable method to incorporate the prior knowledge of the user into optimization problems. The developed EASy-IEC Toolbox (for MATLAB) can be downloaded from the website of the authors: http://www.fmt.vein.hu/softcomp/EAsy.
doi_str_mv 10.1016/j.compchemeng.2004.12.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29446854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135404003552</els_id><sourcerecordid>29446854</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-a0ef419b64a8b6c4cc66b521314557cf3457b250799e4891b5d8a0f0f9adce123</originalsourceid><addsrcrecordid>eNqNkU9PwzAMxSMEEmPwHcqFW0ucJm0qTmjiz6RJXOAcpak7MrXpSNpJfHtSjQO3cbJsPT9bv0fILdAMKBT3u8wM_d58Yo9umzFKeQYso7Q6IwuQZZ7yvBTnZBEnMoVc8EtyFcKOUsq4lAvysHYjem1Ge8AED0M3jXZw2n8ns-806rlNrEv2fjAYQhLPWIfordtek4tWdwFvfuuSfDw_va9e083by3r1uEkNBz6mmmLLoaoLrmVdGG5MUdSCQQ5ciNK0ORdlzQQtqwq5rKAWjdS0pW2lG4PA8iW5O_rGH74mDKPqbTDYddrhMAXFKs4LKfhpoaQFzQFOCyMdYKWMwuooNH4IwWOr9t72EY8CquYA1E79CUDNAShgKuKOu6vjLkY2B4teBWPRGWysRzOqZrD_cPkBLjGVIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20241278</pqid></control><display><type>article</type><title>Interactive evolutionary computation in process engineering</title><source>Access via ScienceDirect (Elsevier)</source><creator>Madar, Janos ; Abonyi, Janos ; Szeifert, Ferenc</creator><creatorcontrib>Madar, Janos ; Abonyi, Janos ; Szeifert, Ferenc</creatorcontrib><description>In practical system identification, process optimization and controller design, it is often desirable to simultaneously handle several objectives and constraints. In some cases, these objectives and constraints are non-commensurable and they are not explicitly/mathematically available. This paper proposes a new subjective optimization method based on interactive evolutionary computation (IEC) to handle these problems. IEC is an evolutionary algorithm whose fitness function is provided by human users. The whole approach has been implemented in MATLAB (EAsy-IEC Toolbox) and applied to two case-studies: tuning a Model Predictive Controller and temperature profile design of a batch beer fermenter. The results show that IEC is an efficient and comfortable method to incorporate the prior knowledge of the user into optimization problems. The developed EASy-IEC Toolbox (for MATLAB) can be downloaded from the website of the authors: http://www.fmt.vein.hu/softcomp/EAsy.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2004.12.009</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Creativity supporting tools ; Interactive evolutionary computation ; Process engineering ; Process optimization</subject><ispartof>Computers &amp; chemical engineering, 2005-06, Vol.29 (7), p.1591-1597</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-a0ef419b64a8b6c4cc66b521314557cf3457b250799e4891b5d8a0f0f9adce123</citedby><cites>FETCH-LOGICAL-c414t-a0ef419b64a8b6c4cc66b521314557cf3457b250799e4891b5d8a0f0f9adce123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compchemeng.2004.12.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Madar, Janos</creatorcontrib><creatorcontrib>Abonyi, Janos</creatorcontrib><creatorcontrib>Szeifert, Ferenc</creatorcontrib><title>Interactive evolutionary computation in process engineering</title><title>Computers &amp; chemical engineering</title><description>In practical system identification, process optimization and controller design, it is often desirable to simultaneously handle several objectives and constraints. In some cases, these objectives and constraints are non-commensurable and they are not explicitly/mathematically available. This paper proposes a new subjective optimization method based on interactive evolutionary computation (IEC) to handle these problems. IEC is an evolutionary algorithm whose fitness function is provided by human users. The whole approach has been implemented in MATLAB (EAsy-IEC Toolbox) and applied to two case-studies: tuning a Model Predictive Controller and temperature profile design of a batch beer fermenter. The results show that IEC is an efficient and comfortable method to incorporate the prior knowledge of the user into optimization problems. The developed EASy-IEC Toolbox (for MATLAB) can be downloaded from the website of the authors: http://www.fmt.vein.hu/softcomp/EAsy.</description><subject>Creativity supporting tools</subject><subject>Interactive evolutionary computation</subject><subject>Process engineering</subject><subject>Process optimization</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkU9PwzAMxSMEEmPwHcqFW0ucJm0qTmjiz6RJXOAcpak7MrXpSNpJfHtSjQO3cbJsPT9bv0fILdAMKBT3u8wM_d58Yo9umzFKeQYso7Q6IwuQZZ7yvBTnZBEnMoVc8EtyFcKOUsq4lAvysHYjem1Ge8AED0M3jXZw2n8ns-806rlNrEv2fjAYQhLPWIfordtek4tWdwFvfuuSfDw_va9e083by3r1uEkNBz6mmmLLoaoLrmVdGG5MUdSCQQ5ciNK0ORdlzQQtqwq5rKAWjdS0pW2lG4PA8iW5O_rGH74mDKPqbTDYddrhMAXFKs4LKfhpoaQFzQFOCyMdYKWMwuooNH4IwWOr9t72EY8CquYA1E79CUDNAShgKuKOu6vjLkY2B4teBWPRGWysRzOqZrD_cPkBLjGVIw</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Madar, Janos</creator><creator>Abonyi, Janos</creator><creator>Szeifert, Ferenc</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TB</scope></search><sort><creationdate>20050601</creationdate><title>Interactive evolutionary computation in process engineering</title><author>Madar, Janos ; Abonyi, Janos ; Szeifert, Ferenc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-a0ef419b64a8b6c4cc66b521314557cf3457b250799e4891b5d8a0f0f9adce123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Creativity supporting tools</topic><topic>Interactive evolutionary computation</topic><topic>Process engineering</topic><topic>Process optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madar, Janos</creatorcontrib><creatorcontrib>Abonyi, Janos</creatorcontrib><creatorcontrib>Szeifert, Ferenc</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><jtitle>Computers &amp; chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madar, Janos</au><au>Abonyi, Janos</au><au>Szeifert, Ferenc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactive evolutionary computation in process engineering</atitle><jtitle>Computers &amp; chemical engineering</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>29</volume><issue>7</issue><spage>1591</spage><epage>1597</epage><pages>1591-1597</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><abstract>In practical system identification, process optimization and controller design, it is often desirable to simultaneously handle several objectives and constraints. In some cases, these objectives and constraints are non-commensurable and they are not explicitly/mathematically available. This paper proposes a new subjective optimization method based on interactive evolutionary computation (IEC) to handle these problems. IEC is an evolutionary algorithm whose fitness function is provided by human users. The whole approach has been implemented in MATLAB (EAsy-IEC Toolbox) and applied to two case-studies: tuning a Model Predictive Controller and temperature profile design of a batch beer fermenter. The results show that IEC is an efficient and comfortable method to incorporate the prior knowledge of the user into optimization problems. The developed EASy-IEC Toolbox (for MATLAB) can be downloaded from the website of the authors: http://www.fmt.vein.hu/softcomp/EAsy.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2004.12.009</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-1354
ispartof Computers & chemical engineering, 2005-06, Vol.29 (7), p.1591-1597
issn 0098-1354
1873-4375
language eng
recordid cdi_proquest_miscellaneous_29446854
source Access via ScienceDirect (Elsevier)
subjects Creativity supporting tools
Interactive evolutionary computation
Process engineering
Process optimization
title Interactive evolutionary computation in process engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactive%20evolutionary%20computation%20in%20process%20engineering&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Madar,%20Janos&rft.date=2005-06-01&rft.volume=29&rft.issue=7&rft.spage=1591&rft.epage=1597&rft.pages=1591-1597&rft.issn=0098-1354&rft.eissn=1873-4375&rft_id=info:doi/10.1016/j.compchemeng.2004.12.009&rft_dat=%3Cproquest_cross%3E29446854%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20241278&rft_id=info:pmid/&rft_els_id=S0098135404003552&rfr_iscdi=true