Anisotropic vector hysteresis model applying Everett function and neural network

This paper deals with a simulation technique based on neural networks and an identification method to approximate the behavior of vector hysteresis characteristics of ferromagnetic materials. The identification procedure is based on theoretical measured vector Everett functions using Fourier expansi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. B, Condensed matter Condensed matter, 2006-02, Vol.372 (1-2), p.138-142
Hauptverfasser: KUCZMANN, Miklos, IVANYI, Amalia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142
container_issue 1-2
container_start_page 138
container_title Physica. B, Condensed matter
container_volume 372
creator KUCZMANN, Miklos
IVANYI, Amalia
description This paper deals with a simulation technique based on neural networks and an identification method to approximate the behavior of vector hysteresis characteristics of ferromagnetic materials. The identification procedure is based on theoretical measured vector Everett functions using Fourier expansion to deal with angle dependence of the measured scalar Everett functions and of the vector Everett functions in the 2D or in the 3D space. Computing afterwards the theoretical measured vector Everett functions for some given directions, the corresponding hysteresis models are approximated by neural networks and are used to build up the vectorial hysteresis model both in isotropic and anisotropic case. The properties of the anisotropic model has been analyzed and shown in figures. For some examples, the first order reversal curves determined from the vectorial model are compared with the corresponding measured curves that have been used to compute the measured scalar Everett functions being the input for the identification procedure.
doi_str_mv 10.1016/j.physb.2005.10.034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29430347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29430347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-15c9ecd9fdafd2e0e4334a0615ec9d24f39400206f63f3235cd39669638ad22b3</originalsourceid><addsrcrecordid>eNpFkEtLAzEAhIMoWKu_wEsuets1j91scyylPkDQg55DmoembpM1yVb6701twbkMDDNz-AC4xqjGCLO7dT187tKqJgi1JakRbU7ABM86WhFM21MwQZzgqmkJOwcXKa1REe7wBLzOvUshxzA4BbdG5RBhucommuQS3ARteiiHod85_wGX25LnDO3oVXbBQ-k19GaMsi-Wf0L8ugRnVvbJXB19Ct7vl2-Lx-r55eFpMX-uFGEoV7hV3CjNrZZWE4NMQ2kjEcOtUVyTxlLeIEQQs4xaSmirNOWMcUZnUhOyolNwe_gdYvgeTcpi45IyfS-9CWMShDe0YOhKkR6KKoaUorFiiG4j405gJPb0xFr80RN7evuwzMrq5ngvk5K9jdIrl_6nXYu6jjD6CyzYct4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29430347</pqid></control><display><type>article</type><title>Anisotropic vector hysteresis model applying Everett function and neural network</title><source>Elsevier ScienceDirect Journals</source><creator>KUCZMANN, Miklos ; IVANYI, Amalia</creator><creatorcontrib>KUCZMANN, Miklos ; IVANYI, Amalia</creatorcontrib><description>This paper deals with a simulation technique based on neural networks and an identification method to approximate the behavior of vector hysteresis characteristics of ferromagnetic materials. The identification procedure is based on theoretical measured vector Everett functions using Fourier expansion to deal with angle dependence of the measured scalar Everett functions and of the vector Everett functions in the 2D or in the 3D space. Computing afterwards the theoretical measured vector Everett functions for some given directions, the corresponding hysteresis models are approximated by neural networks and are used to build up the vectorial hysteresis model both in isotropic and anisotropic case. The properties of the anisotropic model has been analyzed and shown in figures. For some examples, the first order reversal curves determined from the vectorial model are compared with the corresponding measured curves that have been used to compute the measured scalar Everett functions being the input for the identification procedure.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2005.10.034</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Domain effects, magnetization curves, and hysteresis ; Exact sciences and technology ; Magnetic properties and materials ; Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects ; Physics</subject><ispartof>Physica. B, Condensed matter, 2006-02, Vol.372 (1-2), p.138-142</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c260t-15c9ecd9fdafd2e0e4334a0615ec9d24f39400206f63f3235cd39669638ad22b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17507726$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KUCZMANN, Miklos</creatorcontrib><creatorcontrib>IVANYI, Amalia</creatorcontrib><title>Anisotropic vector hysteresis model applying Everett function and neural network</title><title>Physica. B, Condensed matter</title><description>This paper deals with a simulation technique based on neural networks and an identification method to approximate the behavior of vector hysteresis characteristics of ferromagnetic materials. The identification procedure is based on theoretical measured vector Everett functions using Fourier expansion to deal with angle dependence of the measured scalar Everett functions and of the vector Everett functions in the 2D or in the 3D space. Computing afterwards the theoretical measured vector Everett functions for some given directions, the corresponding hysteresis models are approximated by neural networks and are used to build up the vectorial hysteresis model both in isotropic and anisotropic case. The properties of the anisotropic model has been analyzed and shown in figures. For some examples, the first order reversal curves determined from the vectorial model are compared with the corresponding measured curves that have been used to compute the measured scalar Everett functions being the input for the identification procedure.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Domain effects, magnetization curves, and hysteresis</subject><subject>Exact sciences and technology</subject><subject>Magnetic properties and materials</subject><subject>Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects</subject><subject>Physics</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEAhIMoWKu_wEsuets1j91scyylPkDQg55DmoembpM1yVb6701twbkMDDNz-AC4xqjGCLO7dT187tKqJgi1JakRbU7ABM86WhFM21MwQZzgqmkJOwcXKa1REe7wBLzOvUshxzA4BbdG5RBhucommuQS3ARteiiHod85_wGX25LnDO3oVXbBQ-k19GaMsi-Wf0L8ugRnVvbJXB19Ct7vl2-Lx-r55eFpMX-uFGEoV7hV3CjNrZZWE4NMQ2kjEcOtUVyTxlLeIEQQs4xaSmirNOWMcUZnUhOyolNwe_gdYvgeTcpi45IyfS-9CWMShDe0YOhKkR6KKoaUorFiiG4j405gJPb0xFr80RN7evuwzMrq5ngvk5K9jdIrl_6nXYu6jjD6CyzYct4</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>KUCZMANN, Miklos</creator><creator>IVANYI, Amalia</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20060201</creationdate><title>Anisotropic vector hysteresis model applying Everett function and neural network</title><author>KUCZMANN, Miklos ; IVANYI, Amalia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-15c9ecd9fdafd2e0e4334a0615ec9d24f39400206f63f3235cd39669638ad22b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Domain effects, magnetization curves, and hysteresis</topic><topic>Exact sciences and technology</topic><topic>Magnetic properties and materials</topic><topic>Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KUCZMANN, Miklos</creatorcontrib><creatorcontrib>IVANYI, Amalia</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KUCZMANN, Miklos</au><au>IVANYI, Amalia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic vector hysteresis model applying Everett function and neural network</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>372</volume><issue>1-2</issue><spage>138</spage><epage>142</epage><pages>138-142</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>This paper deals with a simulation technique based on neural networks and an identification method to approximate the behavior of vector hysteresis characteristics of ferromagnetic materials. The identification procedure is based on theoretical measured vector Everett functions using Fourier expansion to deal with angle dependence of the measured scalar Everett functions and of the vector Everett functions in the 2D or in the 3D space. Computing afterwards the theoretical measured vector Everett functions for some given directions, the corresponding hysteresis models are approximated by neural networks and are used to build up the vectorial hysteresis model both in isotropic and anisotropic case. The properties of the anisotropic model has been analyzed and shown in figures. For some examples, the first order reversal curves determined from the vectorial model are compared with the corresponding measured curves that have been used to compute the measured scalar Everett functions being the input for the identification procedure.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.physb.2005.10.034</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2006-02, Vol.372 (1-2), p.138-142
issn 0921-4526
1873-2135
language eng
recordid cdi_proquest_miscellaneous_29430347
source Elsevier ScienceDirect Journals
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Domain effects, magnetization curves, and hysteresis
Exact sciences and technology
Magnetic properties and materials
Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects
Physics
title Anisotropic vector hysteresis model applying Everett function and neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20vector%20hysteresis%20model%20applying%20Everett%20function%20and%20neural%20network&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=KUCZMANN,%20Miklos&rft.date=2006-02-01&rft.volume=372&rft.issue=1-2&rft.spage=138&rft.epage=142&rft.pages=138-142&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2005.10.034&rft_dat=%3Cproquest_cross%3E29430347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29430347&rft_id=info:pmid/&rfr_iscdi=true