Anisotropic vector hysteresis model applying Everett function and neural network
This paper deals with a simulation technique based on neural networks and an identification method to approximate the behavior of vector hysteresis characteristics of ferromagnetic materials. The identification procedure is based on theoretical measured vector Everett functions using Fourier expansi...
Gespeichert in:
Veröffentlicht in: | Physica. B, Condensed matter Condensed matter, 2006-02, Vol.372 (1-2), p.138-142 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 142 |
---|---|
container_issue | 1-2 |
container_start_page | 138 |
container_title | Physica. B, Condensed matter |
container_volume | 372 |
creator | KUCZMANN, Miklos IVANYI, Amalia |
description | This paper deals with a simulation technique based on neural networks and an identification method to approximate the behavior of vector hysteresis characteristics of ferromagnetic materials. The identification procedure is based on theoretical measured vector Everett functions using Fourier expansion to deal with angle dependence of the measured scalar Everett functions and of the vector Everett functions in the 2D or in the 3D space. Computing afterwards the theoretical measured vector Everett functions for some given directions, the corresponding hysteresis models are approximated by neural networks and are used to build up the vectorial hysteresis model both in isotropic and anisotropic case. The properties of the anisotropic model has been analyzed and shown in figures. For some examples, the first order reversal curves determined from the vectorial model are compared with the corresponding measured curves that have been used to compute the measured scalar Everett functions being the input for the identification procedure. |
doi_str_mv | 10.1016/j.physb.2005.10.034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29430347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29430347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-15c9ecd9fdafd2e0e4334a0615ec9d24f39400206f63f3235cd39669638ad22b3</originalsourceid><addsrcrecordid>eNpFkEtLAzEAhIMoWKu_wEsuets1j91scyylPkDQg55DmoembpM1yVb6701twbkMDDNz-AC4xqjGCLO7dT187tKqJgi1JakRbU7ABM86WhFM21MwQZzgqmkJOwcXKa1REe7wBLzOvUshxzA4BbdG5RBhucommuQS3ARteiiHod85_wGX25LnDO3oVXbBQ-k19GaMsi-Wf0L8ugRnVvbJXB19Ct7vl2-Lx-r55eFpMX-uFGEoV7hV3CjNrZZWE4NMQ2kjEcOtUVyTxlLeIEQQs4xaSmirNOWMcUZnUhOyolNwe_gdYvgeTcpi45IyfS-9CWMShDe0YOhKkR6KKoaUorFiiG4j405gJPb0xFr80RN7evuwzMrq5ngvk5K9jdIrl_6nXYu6jjD6CyzYct4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29430347</pqid></control><display><type>article</type><title>Anisotropic vector hysteresis model applying Everett function and neural network</title><source>Elsevier ScienceDirect Journals</source><creator>KUCZMANN, Miklos ; IVANYI, Amalia</creator><creatorcontrib>KUCZMANN, Miklos ; IVANYI, Amalia</creatorcontrib><description>This paper deals with a simulation technique based on neural networks and an identification method to approximate the behavior of vector hysteresis characteristics of ferromagnetic materials. The identification procedure is based on theoretical measured vector Everett functions using Fourier expansion to deal with angle dependence of the measured scalar Everett functions and of the vector Everett functions in the 2D or in the 3D space. Computing afterwards the theoretical measured vector Everett functions for some given directions, the corresponding hysteresis models are approximated by neural networks and are used to build up the vectorial hysteresis model both in isotropic and anisotropic case. The properties of the anisotropic model has been analyzed and shown in figures. For some examples, the first order reversal curves determined from the vectorial model are compared with the corresponding measured curves that have been used to compute the measured scalar Everett functions being the input for the identification procedure.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2005.10.034</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Domain effects, magnetization curves, and hysteresis ; Exact sciences and technology ; Magnetic properties and materials ; Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects ; Physics</subject><ispartof>Physica. B, Condensed matter, 2006-02, Vol.372 (1-2), p.138-142</ispartof><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c260t-15c9ecd9fdafd2e0e4334a0615ec9d24f39400206f63f3235cd39669638ad22b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17507726$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>KUCZMANN, Miklos</creatorcontrib><creatorcontrib>IVANYI, Amalia</creatorcontrib><title>Anisotropic vector hysteresis model applying Everett function and neural network</title><title>Physica. B, Condensed matter</title><description>This paper deals with a simulation technique based on neural networks and an identification method to approximate the behavior of vector hysteresis characteristics of ferromagnetic materials. The identification procedure is based on theoretical measured vector Everett functions using Fourier expansion to deal with angle dependence of the measured scalar Everett functions and of the vector Everett functions in the 2D or in the 3D space. Computing afterwards the theoretical measured vector Everett functions for some given directions, the corresponding hysteresis models are approximated by neural networks and are used to build up the vectorial hysteresis model both in isotropic and anisotropic case. The properties of the anisotropic model has been analyzed and shown in figures. For some examples, the first order reversal curves determined from the vectorial model are compared with the corresponding measured curves that have been used to compute the measured scalar Everett functions being the input for the identification procedure.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Domain effects, magnetization curves, and hysteresis</subject><subject>Exact sciences and technology</subject><subject>Magnetic properties and materials</subject><subject>Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects</subject><subject>Physics</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkEtLAzEAhIMoWKu_wEsuets1j91scyylPkDQg55DmoembpM1yVb6701twbkMDDNz-AC4xqjGCLO7dT187tKqJgi1JakRbU7ABM86WhFM21MwQZzgqmkJOwcXKa1REe7wBLzOvUshxzA4BbdG5RBhucommuQS3ARteiiHod85_wGX25LnDO3oVXbBQ-k19GaMsi-Wf0L8ugRnVvbJXB19Ct7vl2-Lx-r55eFpMX-uFGEoV7hV3CjNrZZWE4NMQ2kjEcOtUVyTxlLeIEQQs4xaSmirNOWMcUZnUhOyolNwe_gdYvgeTcpi45IyfS-9CWMShDe0YOhKkR6KKoaUorFiiG4j405gJPb0xFr80RN7evuwzMrq5ngvk5K9jdIrl_6nXYu6jjD6CyzYct4</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>KUCZMANN, Miklos</creator><creator>IVANYI, Amalia</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20060201</creationdate><title>Anisotropic vector hysteresis model applying Everett function and neural network</title><author>KUCZMANN, Miklos ; IVANYI, Amalia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-15c9ecd9fdafd2e0e4334a0615ec9d24f39400206f63f3235cd39669638ad22b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Domain effects, magnetization curves, and hysteresis</topic><topic>Exact sciences and technology</topic><topic>Magnetic properties and materials</topic><topic>Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KUCZMANN, Miklos</creatorcontrib><creatorcontrib>IVANYI, Amalia</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KUCZMANN, Miklos</au><au>IVANYI, Amalia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic vector hysteresis model applying Everett function and neural network</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2006-02-01</date><risdate>2006</risdate><volume>372</volume><issue>1-2</issue><spage>138</spage><epage>142</epage><pages>138-142</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>This paper deals with a simulation technique based on neural networks and an identification method to approximate the behavior of vector hysteresis characteristics of ferromagnetic materials. The identification procedure is based on theoretical measured vector Everett functions using Fourier expansion to deal with angle dependence of the measured scalar Everett functions and of the vector Everett functions in the 2D or in the 3D space. Computing afterwards the theoretical measured vector Everett functions for some given directions, the corresponding hysteresis models are approximated by neural networks and are used to build up the vectorial hysteresis model both in isotropic and anisotropic case. The properties of the anisotropic model has been analyzed and shown in figures. For some examples, the first order reversal curves determined from the vectorial model are compared with the corresponding measured curves that have been used to compute the measured scalar Everett functions being the input for the identification procedure.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.physb.2005.10.034</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-4526 |
ispartof | Physica. B, Condensed matter, 2006-02, Vol.372 (1-2), p.138-142 |
issn | 0921-4526 1873-2135 |
language | eng |
recordid | cdi_proquest_miscellaneous_29430347 |
source | Elsevier ScienceDirect Journals |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Domain effects, magnetization curves, and hysteresis Exact sciences and technology Magnetic properties and materials Magnetization curves, magnetization reversal, hysteresis, barkhausen and related effects Physics |
title | Anisotropic vector hysteresis model applying Everett function and neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20vector%20hysteresis%20model%20applying%20Everett%20function%20and%20neural%20network&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=KUCZMANN,%20Miklos&rft.date=2006-02-01&rft.volume=372&rft.issue=1-2&rft.spage=138&rft.epage=142&rft.pages=138-142&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2005.10.034&rft_dat=%3Cproquest_cross%3E29430347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29430347&rft_id=info:pmid/&rfr_iscdi=true |