Analytical first derivatives of the RE-squared interaction potential
We derive exact expressions for the forces and torques between biaxial molecules interacting via the RE-squared potential, a recent variant of the Gay–Berne potential. Moreover, efficient routines have been provided for rigid body MD simulations, resulting in 1.6 times speedup compared to the two-po...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2006-12, Vol.219 (2), p.770-779 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 779 |
---|---|
container_issue | 2 |
container_start_page | 770 |
container_title | Journal of computational physics |
container_volume | 219 |
creator | Babadi, M. Ejtehadi, M.R. Everaers, R. |
description | We derive exact expressions for the forces and torques between biaxial molecules interacting via the RE-squared potential, a recent variant of the Gay–Berne potential. Moreover, efficient routines have been provided for rigid body MD simulations, resulting in 1.6 times speedup compared to the two-point finite difference approach. It has also been shown that the time cost of a MD simulation will be almost equal to a similar MC simulation, making use of the provided routines. |
doi_str_mv | 10.1016/j.jcp.2006.04.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29427966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999106002130</els_id><sourcerecordid>29427966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-6a8df1cc33ce14ed9bfc1d125fab688b152e052e56284340d3bea6c59bc9773d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKs_wN1sFDczvmQymQmuit9QEETXIZO8wZTpTJukhf57U1pw5-JxN-feB4eQawoFBSruF8XCrAoGIArgBVB-QiYUJOSspuKUTAAYzaWU9JxchLAAgKbizYQ8zQbd76Izus8650PMLHq31dFtMWRjl8UfzD6f87DeaI82c0NEr01045CtxohDdLq_JGed7gNeHXNKvl-evx7f8vnH6_vjbJ4bXtUxF7qxHTWmLA1Sjla2naGWsqrTrWiallYMIV0lWMNLDrZsUQtTydbIui5tOSW3h92VH9cbDFEtXTDY93rAcRMUk5zVUogE3v0LUmgYlclSmVB6QI0fQ_DYqZV3S-13CVJ7tWqhklq1V6uAq31pSm6O8zokcZ3Xg3Hhr9jwVJT77YcDh0nK1qFXwTgcDFrn0URlR_fPl19PA45Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082190143</pqid></control><display><type>article</type><title>Analytical first derivatives of the RE-squared interaction potential</title><source>Elsevier ScienceDirect Journals</source><creator>Babadi, M. ; Ejtehadi, M.R. ; Everaers, R.</creator><creatorcontrib>Babadi, M. ; Ejtehadi, M.R. ; Everaers, R.</creatorcontrib><description>We derive exact expressions for the forces and torques between biaxial molecules interacting via the RE-squared potential, a recent variant of the Gay–Berne potential. Moreover, efficient routines have been provided for rigid body MD simulations, resulting in 1.6 times speedup compared to the two-point finite difference approach. It has also been shown that the time cost of a MD simulation will be almost equal to a similar MC simulation, making use of the provided routines.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2006.04.014</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Analytical derivatives ; Biaxial ellipsoidal potential ; Coarse-grained model ; Computation ; Computational techniques ; Computer simulation ; Derivatives ; Exact sciences and technology ; Lennard–Jones(6–12) potential ; Mathematical analysis ; Mathematical methods in physics ; Physics ; Rigid-body dynamics ; Rigid-body MD simulation ; Routines</subject><ispartof>Journal of computational physics, 2006-12, Vol.219 (2), p.770-779</ispartof><rights>2006 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-6a8df1cc33ce14ed9bfc1d125fab688b152e052e56284340d3bea6c59bc9773d3</citedby><cites>FETCH-LOGICAL-c457t-6a8df1cc33ce14ed9bfc1d125fab688b152e052e56284340d3bea6c59bc9773d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999106002130$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18410193$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Babadi, M.</creatorcontrib><creatorcontrib>Ejtehadi, M.R.</creatorcontrib><creatorcontrib>Everaers, R.</creatorcontrib><title>Analytical first derivatives of the RE-squared interaction potential</title><title>Journal of computational physics</title><description>We derive exact expressions for the forces and torques between biaxial molecules interacting via the RE-squared potential, a recent variant of the Gay–Berne potential. Moreover, efficient routines have been provided for rigid body MD simulations, resulting in 1.6 times speedup compared to the two-point finite difference approach. It has also been shown that the time cost of a MD simulation will be almost equal to a similar MC simulation, making use of the provided routines.</description><subject>Analytical derivatives</subject><subject>Biaxial ellipsoidal potential</subject><subject>Coarse-grained model</subject><subject>Computation</subject><subject>Computational techniques</subject><subject>Computer simulation</subject><subject>Derivatives</subject><subject>Exact sciences and technology</subject><subject>Lennard–Jones(6–12) potential</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Rigid-body dynamics</subject><subject>Rigid-body MD simulation</subject><subject>Routines</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKs_wN1sFDczvmQymQmuit9QEETXIZO8wZTpTJukhf57U1pw5-JxN-feB4eQawoFBSruF8XCrAoGIArgBVB-QiYUJOSspuKUTAAYzaWU9JxchLAAgKbizYQ8zQbd76Izus8650PMLHq31dFtMWRjl8UfzD6f87DeaI82c0NEr01045CtxohDdLq_JGed7gNeHXNKvl-evx7f8vnH6_vjbJ4bXtUxF7qxHTWmLA1Sjla2naGWsqrTrWiallYMIV0lWMNLDrZsUQtTydbIui5tOSW3h92VH9cbDFEtXTDY93rAcRMUk5zVUogE3v0LUmgYlclSmVB6QI0fQ_DYqZV3S-13CVJ7tWqhklq1V6uAq31pSm6O8zokcZ3Xg3Hhr9jwVJT77YcDh0nK1qFXwTgcDFrn0URlR_fPl19PA45Q</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Babadi, M.</creator><creator>Ejtehadi, M.R.</creator><creator>Everaers, R.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20061201</creationdate><title>Analytical first derivatives of the RE-squared interaction potential</title><author>Babadi, M. ; Ejtehadi, M.R. ; Everaers, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-6a8df1cc33ce14ed9bfc1d125fab688b152e052e56284340d3bea6c59bc9773d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Analytical derivatives</topic><topic>Biaxial ellipsoidal potential</topic><topic>Coarse-grained model</topic><topic>Computation</topic><topic>Computational techniques</topic><topic>Computer simulation</topic><topic>Derivatives</topic><topic>Exact sciences and technology</topic><topic>Lennard–Jones(6–12) potential</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Rigid-body dynamics</topic><topic>Rigid-body MD simulation</topic><topic>Routines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babadi, M.</creatorcontrib><creatorcontrib>Ejtehadi, M.R.</creatorcontrib><creatorcontrib>Everaers, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babadi, M.</au><au>Ejtehadi, M.R.</au><au>Everaers, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical first derivatives of the RE-squared interaction potential</atitle><jtitle>Journal of computational physics</jtitle><date>2006-12-01</date><risdate>2006</risdate><volume>219</volume><issue>2</issue><spage>770</spage><epage>779</epage><pages>770-779</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We derive exact expressions for the forces and torques between biaxial molecules interacting via the RE-squared potential, a recent variant of the Gay–Berne potential. Moreover, efficient routines have been provided for rigid body MD simulations, resulting in 1.6 times speedup compared to the two-point finite difference approach. It has also been shown that the time cost of a MD simulation will be almost equal to a similar MC simulation, making use of the provided routines.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2006.04.014</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2006-12, Vol.219 (2), p.770-779 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_29427966 |
source | Elsevier ScienceDirect Journals |
subjects | Analytical derivatives Biaxial ellipsoidal potential Coarse-grained model Computation Computational techniques Computer simulation Derivatives Exact sciences and technology Lennard–Jones(6–12) potential Mathematical analysis Mathematical methods in physics Physics Rigid-body dynamics Rigid-body MD simulation Routines |
title | Analytical first derivatives of the RE-squared interaction potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20first%20derivatives%20of%20the%20RE-squared%20interaction%20potential&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Babadi,%20M.&rft.date=2006-12-01&rft.volume=219&rft.issue=2&rft.spage=770&rft.epage=779&rft.pages=770-779&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2006.04.014&rft_dat=%3Cproquest_cross%3E29427966%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082190143&rft_id=info:pmid/&rft_els_id=S0021999106002130&rfr_iscdi=true |