Graph-theoretical prediction of biological modules in quaternary structures of large protein complexes

Abstract Motivation The functional complexity of biochemical processes is strongly related to the interplay of proteins and their assembly into protein complexes. In recent years, the discovery and characterization of protein complexes have substantially progressed through advances in cryo-electron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics (Oxford, England) England), 2024-03, Vol.40 (3)
Hauptverfasser: Gisdon, Florian J, Zunker, Mariella, Wolf, Jan Niclas, Prüfer, Kai, Ackermann, Jörg, Welsch, Christoph, Koch, Ina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Bioinformatics (Oxford, England)
container_volume 40
creator Gisdon, Florian J
Zunker, Mariella
Wolf, Jan Niclas
Prüfer, Kai
Ackermann, Jörg
Welsch, Christoph
Koch, Ina
description Abstract Motivation The functional complexity of biochemical processes is strongly related to the interplay of proteins and their assembly into protein complexes. In recent years, the discovery and characterization of protein complexes have substantially progressed through advances in cryo-electron microscopy, proteomics, and computational structure prediction. This development results in a strong need for computational approaches to analyse the data of large protein complexes for structural and functional characterization. Here, we aim to provide a suitable approach, which processes the growing number of large protein complexes, to obtain biologically meaningful information on the hierarchical organization of the structures of protein complexes. Results We modelled the quaternary structure of protein complexes as undirected, labelled graphs called complex graphs. In complex graphs, the vertices represent protein chains and the edges spatial chain–chain contacts. We hypothesized that clusters based on the complex graph correspond to functional biological modules. To compute the clusters, we applied the Leiden clustering algorithm. To evaluate our approach, we chose the human respiratory complex I, which has been extensively investigated and exhibits a known biological module structure experimentally validated. Additionally, we characterized a eukaryotic group II chaperonin TRiC/CCT and the head of the bacteriophage Φ29. The analysis of the protein complexes correlated with experimental findings and indicated known functional, biological modules. Using our approach enables not only to predict functional biological modules in large protein complexes with characteristic features but also to investigate the flexibility of specific regions and coformational changes. The predicted modules can aid in the planning and analysis of experiments. Availability and implementation Jupyter notebooks to reproduce the examples are available on our public GitHub repository: https://github.com/MolBIFFM/PTGLtools/tree/main/PTGLmodulePrediction.
doi_str_mv 10.1093/bioinformatics/btae112
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2942190257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btae112</oup_id><sourcerecordid>2942190257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-ab0bd0f9b2605c6b79ed4180c7b17b0ad4dc32b01478e958d82a5b988c7f93e53</originalsourceid><addsrcrecordid>eNqNkElPwzAQhS0EomX5C1WOXEK9ZLGPqGKTKnGBc-Rl0gY5cWo7Evx7DC2VuHGakeZ7b2YeQguCbwkWbKk61w2t872MnQ5LFSUQQk_QnLCqzgtOyOmxx2yGLkJ4xxiXuKzO0YzxohBUVHPUPno5bvO4BechWUmbjR5Mp2Pnhsy1WVpk3eZn0DszWQhZN2S7SUbwg_SfWYh-0nHyaZBwK_0GkoWLkDDt-tHCB4QrdNZKG-D6UC_R28P96-opX788Pq_u1rlmBY-5VFgZ3ApFK1zqStUCTEE41rUitcLSFEYzqjApag6i5IZTWSrBua5bwaBkl-hm75su2E0QYtN3QYO1cgA3hYaKghKBaVkntNqj2rsQPLTN6Ls-fdQQ3Hxn3PzNuDlknISLw45J9WCOst9QE0D2gJvG_5p-AZd2klg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2942190257</pqid></control><display><type>article</type><title>Graph-theoretical prediction of biological modules in quaternary structures of large protein complexes</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Gisdon, Florian J ; Zunker, Mariella ; Wolf, Jan Niclas ; Prüfer, Kai ; Ackermann, Jörg ; Welsch, Christoph ; Koch, Ina</creator><contributor>Elofsson, Arne</contributor><creatorcontrib>Gisdon, Florian J ; Zunker, Mariella ; Wolf, Jan Niclas ; Prüfer, Kai ; Ackermann, Jörg ; Welsch, Christoph ; Koch, Ina ; Elofsson, Arne</creatorcontrib><description>Abstract Motivation The functional complexity of biochemical processes is strongly related to the interplay of proteins and their assembly into protein complexes. In recent years, the discovery and characterization of protein complexes have substantially progressed through advances in cryo-electron microscopy, proteomics, and computational structure prediction. This development results in a strong need for computational approaches to analyse the data of large protein complexes for structural and functional characterization. Here, we aim to provide a suitable approach, which processes the growing number of large protein complexes, to obtain biologically meaningful information on the hierarchical organization of the structures of protein complexes. Results We modelled the quaternary structure of protein complexes as undirected, labelled graphs called complex graphs. In complex graphs, the vertices represent protein chains and the edges spatial chain–chain contacts. We hypothesized that clusters based on the complex graph correspond to functional biological modules. To compute the clusters, we applied the Leiden clustering algorithm. To evaluate our approach, we chose the human respiratory complex I, which has been extensively investigated and exhibits a known biological module structure experimentally validated. Additionally, we characterized a eukaryotic group II chaperonin TRiC/CCT and the head of the bacteriophage Φ29. The analysis of the protein complexes correlated with experimental findings and indicated known functional, biological modules. Using our approach enables not only to predict functional biological modules in large protein complexes with characteristic features but also to investigate the flexibility of specific regions and coformational changes. The predicted modules can aid in the planning and analysis of experiments. Availability and implementation Jupyter notebooks to reproduce the examples are available on our public GitHub repository: https://github.com/MolBIFFM/PTGLtools/tree/main/PTGLmodulePrediction.</description><identifier>ISSN: 1367-4803</identifier><identifier>ISSN: 1367-4811</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btae112</identifier><identifier>PMID: 38449296</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Computational Biology - methods ; Cryoelectron Microscopy ; Humans ; Protein Interaction Mapping - methods ; Proteins - metabolism</subject><ispartof>Bioinformatics (Oxford, England), 2024-03, Vol.40 (3)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-ab0bd0f9b2605c6b79ed4180c7b17b0ad4dc32b01478e958d82a5b988c7f93e53</cites><orcidid>0000-0002-3621-003X ; 0000-0002-3432-5992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,1604,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38449296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Elofsson, Arne</contributor><creatorcontrib>Gisdon, Florian J</creatorcontrib><creatorcontrib>Zunker, Mariella</creatorcontrib><creatorcontrib>Wolf, Jan Niclas</creatorcontrib><creatorcontrib>Prüfer, Kai</creatorcontrib><creatorcontrib>Ackermann, Jörg</creatorcontrib><creatorcontrib>Welsch, Christoph</creatorcontrib><creatorcontrib>Koch, Ina</creatorcontrib><title>Graph-theoretical prediction of biological modules in quaternary structures of large protein complexes</title><title>Bioinformatics (Oxford, England)</title><addtitle>Bioinformatics</addtitle><description>Abstract Motivation The functional complexity of biochemical processes is strongly related to the interplay of proteins and their assembly into protein complexes. In recent years, the discovery and characterization of protein complexes have substantially progressed through advances in cryo-electron microscopy, proteomics, and computational structure prediction. This development results in a strong need for computational approaches to analyse the data of large protein complexes for structural and functional characterization. Here, we aim to provide a suitable approach, which processes the growing number of large protein complexes, to obtain biologically meaningful information on the hierarchical organization of the structures of protein complexes. Results We modelled the quaternary structure of protein complexes as undirected, labelled graphs called complex graphs. In complex graphs, the vertices represent protein chains and the edges spatial chain–chain contacts. We hypothesized that clusters based on the complex graph correspond to functional biological modules. To compute the clusters, we applied the Leiden clustering algorithm. To evaluate our approach, we chose the human respiratory complex I, which has been extensively investigated and exhibits a known biological module structure experimentally validated. Additionally, we characterized a eukaryotic group II chaperonin TRiC/CCT and the head of the bacteriophage Φ29. The analysis of the protein complexes correlated with experimental findings and indicated known functional, biological modules. Using our approach enables not only to predict functional biological modules in large protein complexes with characteristic features but also to investigate the flexibility of specific regions and coformational changes. The predicted modules can aid in the planning and analysis of experiments. Availability and implementation Jupyter notebooks to reproduce the examples are available on our public GitHub repository: https://github.com/MolBIFFM/PTGLtools/tree/main/PTGLmodulePrediction.</description><subject>Algorithms</subject><subject>Computational Biology - methods</subject><subject>Cryoelectron Microscopy</subject><subject>Humans</subject><subject>Protein Interaction Mapping - methods</subject><subject>Proteins - metabolism</subject><issn>1367-4803</issn><issn>1367-4811</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkElPwzAQhS0EomX5C1WOXEK9ZLGPqGKTKnGBc-Rl0gY5cWo7Evx7DC2VuHGakeZ7b2YeQguCbwkWbKk61w2t872MnQ5LFSUQQk_QnLCqzgtOyOmxx2yGLkJ4xxiXuKzO0YzxohBUVHPUPno5bvO4BechWUmbjR5Mp2Pnhsy1WVpk3eZn0DszWQhZN2S7SUbwg_SfWYh-0nHyaZBwK_0GkoWLkDDt-tHCB4QrdNZKG-D6UC_R28P96-opX788Pq_u1rlmBY-5VFgZ3ApFK1zqStUCTEE41rUitcLSFEYzqjApag6i5IZTWSrBua5bwaBkl-hm75su2E0QYtN3QYO1cgA3hYaKghKBaVkntNqj2rsQPLTN6Ls-fdQQ3Hxn3PzNuDlknISLw45J9WCOst9QE0D2gJvG_5p-AZd2klg</recordid><startdate>20240304</startdate><enddate>20240304</enddate><creator>Gisdon, Florian J</creator><creator>Zunker, Mariella</creator><creator>Wolf, Jan Niclas</creator><creator>Prüfer, Kai</creator><creator>Ackermann, Jörg</creator><creator>Welsch, Christoph</creator><creator>Koch, Ina</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3621-003X</orcidid><orcidid>https://orcid.org/0000-0002-3432-5992</orcidid></search><sort><creationdate>20240304</creationdate><title>Graph-theoretical prediction of biological modules in quaternary structures of large protein complexes</title><author>Gisdon, Florian J ; Zunker, Mariella ; Wolf, Jan Niclas ; Prüfer, Kai ; Ackermann, Jörg ; Welsch, Christoph ; Koch, Ina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-ab0bd0f9b2605c6b79ed4180c7b17b0ad4dc32b01478e958d82a5b988c7f93e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Computational Biology - methods</topic><topic>Cryoelectron Microscopy</topic><topic>Humans</topic><topic>Protein Interaction Mapping - methods</topic><topic>Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gisdon, Florian J</creatorcontrib><creatorcontrib>Zunker, Mariella</creatorcontrib><creatorcontrib>Wolf, Jan Niclas</creatorcontrib><creatorcontrib>Prüfer, Kai</creatorcontrib><creatorcontrib>Ackermann, Jörg</creatorcontrib><creatorcontrib>Welsch, Christoph</creatorcontrib><creatorcontrib>Koch, Ina</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics (Oxford, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gisdon, Florian J</au><au>Zunker, Mariella</au><au>Wolf, Jan Niclas</au><au>Prüfer, Kai</au><au>Ackermann, Jörg</au><au>Welsch, Christoph</au><au>Koch, Ina</au><au>Elofsson, Arne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph-theoretical prediction of biological modules in quaternary structures of large protein complexes</atitle><jtitle>Bioinformatics (Oxford, England)</jtitle><addtitle>Bioinformatics</addtitle><date>2024-03-04</date><risdate>2024</risdate><volume>40</volume><issue>3</issue><issn>1367-4803</issn><issn>1367-4811</issn><eissn>1367-4811</eissn><abstract>Abstract Motivation The functional complexity of biochemical processes is strongly related to the interplay of proteins and their assembly into protein complexes. In recent years, the discovery and characterization of protein complexes have substantially progressed through advances in cryo-electron microscopy, proteomics, and computational structure prediction. This development results in a strong need for computational approaches to analyse the data of large protein complexes for structural and functional characterization. Here, we aim to provide a suitable approach, which processes the growing number of large protein complexes, to obtain biologically meaningful information on the hierarchical organization of the structures of protein complexes. Results We modelled the quaternary structure of protein complexes as undirected, labelled graphs called complex graphs. In complex graphs, the vertices represent protein chains and the edges spatial chain–chain contacts. We hypothesized that clusters based on the complex graph correspond to functional biological modules. To compute the clusters, we applied the Leiden clustering algorithm. To evaluate our approach, we chose the human respiratory complex I, which has been extensively investigated and exhibits a known biological module structure experimentally validated. Additionally, we characterized a eukaryotic group II chaperonin TRiC/CCT and the head of the bacteriophage Φ29. The analysis of the protein complexes correlated with experimental findings and indicated known functional, biological modules. Using our approach enables not only to predict functional biological modules in large protein complexes with characteristic features but also to investigate the flexibility of specific regions and coformational changes. The predicted modules can aid in the planning and analysis of experiments. Availability and implementation Jupyter notebooks to reproduce the examples are available on our public GitHub repository: https://github.com/MolBIFFM/PTGLtools/tree/main/PTGLmodulePrediction.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>38449296</pmid><doi>10.1093/bioinformatics/btae112</doi><orcidid>https://orcid.org/0000-0002-3621-003X</orcidid><orcidid>https://orcid.org/0000-0002-3432-5992</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics (Oxford, England), 2024-03, Vol.40 (3)
issn 1367-4803
1367-4811
1367-4811
language eng
recordid cdi_proquest_miscellaneous_2942190257
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Computational Biology - methods
Cryoelectron Microscopy
Humans
Protein Interaction Mapping - methods
Proteins - metabolism
title Graph-theoretical prediction of biological modules in quaternary structures of large protein complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A39%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph-theoretical%20prediction%20of%20biological%20modules%20in%20quaternary%20structures%20of%20large%20protein%20complexes&rft.jtitle=Bioinformatics%20(Oxford,%20England)&rft.au=Gisdon,%20Florian%20J&rft.date=2024-03-04&rft.volume=40&rft.issue=3&rft.issn=1367-4803&rft.eissn=1367-4811&rft_id=info:doi/10.1093/bioinformatics/btae112&rft_dat=%3Cproquest_cross%3E2942190257%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2942190257&rft_id=info:pmid/38449296&rft_oup_id=10.1093/bioinformatics/btae112&rfr_iscdi=true