Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using RANS code
Fundamental research on vortex-induced vibration (VIV) of a circular cylinder is still needed to build more rational VIV analysis tools for slender marine structures. Numerical results are presented for the response of an elastically mounted rigid cylinder at low mass damping constrained to oscillat...
Gespeichert in:
Veröffentlicht in: | Journal of fluids and structures 2007, Vol.23 (1), p.23-37 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | 1 |
container_start_page | 23 |
container_title | Journal of fluids and structures |
container_volume | 23 |
creator | Pan, Z.Y. Cui, W.C. Miao, Q.M. |
description | Fundamental research on vortex-induced vibration (VIV) of a circular cylinder is still needed to build more rational VIV analysis tools for slender marine structures. Numerical results are presented for the response of an elastically mounted rigid cylinder at low mass damping constrained to oscillate transversely to a free stream. A two-dimensional Reynolds-averaged Navier–Stokes (RANS) code equipped with the SST
k−
ω turbulence model is applied for the numerical calculations. The numerical results are compared in detail with recent experimental and computational work. The Reynolds-averaging procedure erases the random disturbances in the vortex shedding process, so that the comparison between experimental data and the numerical results obtained by RANS codes may reveal some random characteristics of the VIV response. How random disturbance affects the observation in the experiments is discussed in this paper and the issues influencing the appearance of the upper branch in experiments are especially investigated. The absence of the upper branch in RANS simulations is explained in depth on account of discrepancies, which exist between experiments and RANS simulations. In addition, the formation of the 2P vortex shedding mode and its transition through the lock-in region are well reproduced in this investigation. |
doi_str_mv | 10.1016/j.jfluidstructs.2006.07.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29421802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0889974606000892</els_id><sourcerecordid>29421802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-e42e3d365c2686bf750420a3fa8bd1aeb7626409559a60fb2c1936a6653c26eb3</originalsourceid><addsrcrecordid>eNqNkU1r3DAQQEVpodu0_0FQWnqxM5JsWSKnENIkEFLIx1nI8rhoa1tbyd40_z5aNjTkkvYyc5g3M8w8Qj4zKBkwebgu1_2w-C7NcXFzKjmALKEpAZo3ZMVA14WSnL8lK1BKF7qp5HvyIaU1AOhKsBX5dbWMGL2zA01-XAY7-zDR0NNtiDP-KfzULQ47uvVt_Fuz1PnoMhypexgygpHamQ7hno42paKz48ZPP-mSdvH6-OqGutDhR_Kut0PCT0_5gNx9P709OS8uf5xdnBxfFq7mMBdYcRSdkLXjUsm2b2qoOFjRW9V2zGLbSC6rfFutrYS-5Y5pIa2Utcgd2IoD8nU_dxPD7wXTbEafHA6DnTAsyXBdcaaAZ_DbqyCTFedCiFr_GwXFmQal64we7VEXQ0oRe7OJfrTxIUNmp82szQttZqfNQGOyttz95WmRTdlKH-3kfHoeoSoBjRaZO91zmD-59RhNch6n7MpHdLPpgv-vfY-iY7ZP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082190895</pqid></control><display><type>article</type><title>Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using RANS code</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Pan, Z.Y. ; Cui, W.C. ; Miao, Q.M.</creator><creatorcontrib>Pan, Z.Y. ; Cui, W.C. ; Miao, Q.M.</creatorcontrib><description>Fundamental research on vortex-induced vibration (VIV) of a circular cylinder is still needed to build more rational VIV analysis tools for slender marine structures. Numerical results are presented for the response of an elastically mounted rigid cylinder at low mass damping constrained to oscillate transversely to a free stream. A two-dimensional Reynolds-averaged Navier–Stokes (RANS) code equipped with the SST
k−
ω turbulence model is applied for the numerical calculations. The numerical results are compared in detail with recent experimental and computational work. The Reynolds-averaging procedure erases the random disturbances in the vortex shedding process, so that the comparison between experimental data and the numerical results obtained by RANS codes may reveal some random characteristics of the VIV response. How random disturbance affects the observation in the experiments is discussed in this paper and the issues influencing the appearance of the upper branch in experiments are especially investigated. The absence of the upper branch in RANS simulations is explained in depth on account of discrepancies, which exist between experiments and RANS simulations. In addition, the formation of the 2P vortex shedding mode and its transition through the lock-in region are well reproduced in this investigation.</description><identifier>ISSN: 0889-9746</identifier><identifier>EISSN: 1095-8622</identifier><identifier>DOI: 10.1016/j.jfluidstructs.2006.07.007</identifier><identifier>CODEN: JFSTEF</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Circular cylinder ; Circular cylinders ; Computer simulation ; Cylinders ; Disturbances ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Mathematical models ; Navier-Stokes equations ; Physics ; RANS ; Rotational flow and vorticity ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) ; Vortex shedding ; Vortex shedding mode ; Vortex-induced vibration (VIV) ; Vortex-induced vibrations</subject><ispartof>Journal of fluids and structures, 2007, Vol.23 (1), p.23-37</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-e42e3d365c2686bf750420a3fa8bd1aeb7626409559a60fb2c1936a6653c26eb3</citedby><cites>FETCH-LOGICAL-c520t-e42e3d365c2686bf750420a3fa8bd1aeb7626409559a60fb2c1936a6653c26eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfluidstructs.2006.07.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18430793$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Z.Y.</creatorcontrib><creatorcontrib>Cui, W.C.</creatorcontrib><creatorcontrib>Miao, Q.M.</creatorcontrib><title>Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using RANS code</title><title>Journal of fluids and structures</title><description>Fundamental research on vortex-induced vibration (VIV) of a circular cylinder is still needed to build more rational VIV analysis tools for slender marine structures. Numerical results are presented for the response of an elastically mounted rigid cylinder at low mass damping constrained to oscillate transversely to a free stream. A two-dimensional Reynolds-averaged Navier–Stokes (RANS) code equipped with the SST
k−
ω turbulence model is applied for the numerical calculations. The numerical results are compared in detail with recent experimental and computational work. The Reynolds-averaging procedure erases the random disturbances in the vortex shedding process, so that the comparison between experimental data and the numerical results obtained by RANS codes may reveal some random characteristics of the VIV response. How random disturbance affects the observation in the experiments is discussed in this paper and the issues influencing the appearance of the upper branch in experiments are especially investigated. The absence of the upper branch in RANS simulations is explained in depth on account of discrepancies, which exist between experiments and RANS simulations. In addition, the formation of the 2P vortex shedding mode and its transition through the lock-in region are well reproduced in this investigation.</description><subject>Circular cylinder</subject><subject>Circular cylinders</subject><subject>Computer simulation</subject><subject>Cylinders</subject><subject>Disturbances</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Physics</subject><subject>RANS</subject><subject>Rotational flow and vorticity</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><subject>Vortex shedding</subject><subject>Vortex shedding mode</subject><subject>Vortex-induced vibration (VIV)</subject><subject>Vortex-induced vibrations</subject><issn>0889-9746</issn><issn>1095-8622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkU1r3DAQQEVpodu0_0FQWnqxM5JsWSKnENIkEFLIx1nI8rhoa1tbyd40_z5aNjTkkvYyc5g3M8w8Qj4zKBkwebgu1_2w-C7NcXFzKjmALKEpAZo3ZMVA14WSnL8lK1BKF7qp5HvyIaU1AOhKsBX5dbWMGL2zA01-XAY7-zDR0NNtiDP-KfzULQ47uvVt_Fuz1PnoMhypexgygpHamQ7hno42paKz48ZPP-mSdvH6-OqGutDhR_Kut0PCT0_5gNx9P709OS8uf5xdnBxfFq7mMBdYcRSdkLXjUsm2b2qoOFjRW9V2zGLbSC6rfFutrYS-5Y5pIa2Utcgd2IoD8nU_dxPD7wXTbEafHA6DnTAsyXBdcaaAZ_DbqyCTFedCiFr_GwXFmQal64we7VEXQ0oRe7OJfrTxIUNmp82szQttZqfNQGOyttz95WmRTdlKH-3kfHoeoSoBjRaZO91zmD-59RhNch6n7MpHdLPpgv-vfY-iY7ZP</recordid><startdate>2007</startdate><enddate>2007</enddate><creator>Pan, Z.Y.</creator><creator>Cui, W.C.</creator><creator>Miao, Q.M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>2007</creationdate><title>Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using RANS code</title><author>Pan, Z.Y. ; Cui, W.C. ; Miao, Q.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-e42e3d365c2686bf750420a3fa8bd1aeb7626409559a60fb2c1936a6653c26eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Circular cylinder</topic><topic>Circular cylinders</topic><topic>Computer simulation</topic><topic>Cylinders</topic><topic>Disturbances</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Physics</topic><topic>RANS</topic><topic>Rotational flow and vorticity</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><topic>Vortex shedding</topic><topic>Vortex shedding mode</topic><topic>Vortex-induced vibration (VIV)</topic><topic>Vortex-induced vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Z.Y.</creatorcontrib><creatorcontrib>Cui, W.C.</creatorcontrib><creatorcontrib>Miao, Q.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of fluids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Z.Y.</au><au>Cui, W.C.</au><au>Miao, Q.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using RANS code</atitle><jtitle>Journal of fluids and structures</jtitle><date>2007</date><risdate>2007</risdate><volume>23</volume><issue>1</issue><spage>23</spage><epage>37</epage><pages>23-37</pages><issn>0889-9746</issn><eissn>1095-8622</eissn><coden>JFSTEF</coden><abstract>Fundamental research on vortex-induced vibration (VIV) of a circular cylinder is still needed to build more rational VIV analysis tools for slender marine structures. Numerical results are presented for the response of an elastically mounted rigid cylinder at low mass damping constrained to oscillate transversely to a free stream. A two-dimensional Reynolds-averaged Navier–Stokes (RANS) code equipped with the SST
k−
ω turbulence model is applied for the numerical calculations. The numerical results are compared in detail with recent experimental and computational work. The Reynolds-averaging procedure erases the random disturbances in the vortex shedding process, so that the comparison between experimental data and the numerical results obtained by RANS codes may reveal some random characteristics of the VIV response. How random disturbance affects the observation in the experiments is discussed in this paper and the issues influencing the appearance of the upper branch in experiments are especially investigated. The absence of the upper branch in RANS simulations is explained in depth on account of discrepancies, which exist between experiments and RANS simulations. In addition, the formation of the 2P vortex shedding mode and its transition through the lock-in region are well reproduced in this investigation.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfluidstructs.2006.07.007</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0889-9746 |
ispartof | Journal of fluids and structures, 2007, Vol.23 (1), p.23-37 |
issn | 0889-9746 1095-8622 |
language | eng |
recordid | cdi_proquest_miscellaneous_29421802 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Circular cylinder Circular cylinders Computer simulation Cylinders Disturbances Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Mathematical models Navier-Stokes equations Physics RANS Rotational flow and vorticity Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) Vortex shedding Vortex shedding mode Vortex-induced vibration (VIV) Vortex-induced vibrations |
title | Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using RANS code |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A39%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20vortex-induced%20vibration%20of%20a%20circular%20cylinder%20at%20low%20mass-damping%20using%20RANS%20code&rft.jtitle=Journal%20of%20fluids%20and%20structures&rft.au=Pan,%20Z.Y.&rft.date=2007&rft.volume=23&rft.issue=1&rft.spage=23&rft.epage=37&rft.pages=23-37&rft.issn=0889-9746&rft.eissn=1095-8622&rft.coden=JFSTEF&rft_id=info:doi/10.1016/j.jfluidstructs.2006.07.007&rft_dat=%3Cproquest_cross%3E29421802%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082190895&rft_id=info:pmid/&rft_els_id=S0889974606000892&rfr_iscdi=true |