Nanofiber Generation of Gelatin-Hydroxyapatite Biomimetics for Guided Tissue Regeneration

The development of biomimetic bone matrices is one of the major goals in the bone‐regeneration and tissue‐engineering fields. Nanocomposites consisting of a natural polymer and hydroxyapatite (HA) nanocrystals, which mimic the human bone matrix, are thus regarded as promising bone regenerative mater...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2005-12, Vol.15 (12), p.1988-1994
Hauptverfasser: Kim, H.-W., Song, J.-H., Kim, H.-E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1994
container_issue 12
container_start_page 1988
container_title Advanced functional materials
container_volume 15
creator Kim, H.-W.
Song, J.-H.
Kim, H.-E.
description The development of biomimetic bone matrices is one of the major goals in the bone‐regeneration and tissue‐engineering fields. Nanocomposites consisting of a natural polymer and hydroxyapatite (HA) nanocrystals, which mimic the human bone matrix, are thus regarded as promising bone regenerative materials. Herein, we developed a biomimetic nanocomposite with a novel nanofibrous structure by employing an electrospinning (ES) method. The HA precipitate/gelatin matrix nanocomposites are lyophilized and dissolved in an organic solvent, and then electrospun under controlled conditions. With this process, we can successfully generate a continuous fiber with a diameter of the order of hundreds of nanometers. The internal structure of the nanofiber features a typical nanocomposite, i.e., HA nanocrystals well distributed within a gelatin matrix. These nanocomposite fibers improve the bone‐derived cellular activity significantly when compared to the pure gelatin equivalent. This method of generating a nanofiber of the biomimetic nanocomposite was effective in producing a biomedical membrane with a composition gradient, which is potentially applicable in the field of guided tissue regeneration (GTR). Nanofibers of gelatin–hydroxyapatite can be generated from a biomimetic nanocomposite solution by electrospinning. This methodology of generating a nanofiber of the biomedical nanocomposite is effective in producing a functional membrane with a composition gradient (gelatin/gelatin–20%HA layered nanofiber matrix, see Figure), which is potentially applicable in the field of guided tissue regeneration.
doi_str_mv 10.1002/adfm.200500116
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29418213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29418213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3396-64b32de34100304612793bd5f3b62064fe1782e26507989e38d3a9df8200b2113</originalsourceid><addsrcrecordid>eNqFkL1PwzAUxC0EEqWwMmdiS_FH4iRjW2gLKkWqivhYLKd5RoYkLnYimv8eV0UVG9O7J93vpDuELgkeEIzptSxUNaAYxxgTwo9Qj3DCQ4ZpenzQ5OUUnTn34S1JwqIeel3I2iidgw2mUIOVjTZ1YJT_Sq_rcNYV1mw7ufFfA8FIm0pX0Oi1C5TxUKsLKIKVdq6FYAnvh5BzdKJk6eDi9_bR0-R2NZ6F88fp3Xg4D9eMZTzkUc5oASzyHRiOOKFJxvIiViznFPNIAUlSCpTHOMnSDFhaMJkVKvVNc0oI66Orfe7Gmq8WXCMq7dZQlrIG0zpBs4iklDBvHOyNa2ucs6DExupK2k4QLHYLit2C4rCgB7I98K1L6P5xi-HN5OEvG-5Z7RrYHlhpPwVPWBKL58VUzOc0Xt6PxuKN_QCkg4Og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29418213</pqid></control><display><type>article</type><title>Nanofiber Generation of Gelatin-Hydroxyapatite Biomimetics for Guided Tissue Regeneration</title><source>Access via Wiley Online Library</source><creator>Kim, H.-W. ; Song, J.-H. ; Kim, H.-E.</creator><creatorcontrib>Kim, H.-W. ; Song, J.-H. ; Kim, H.-E.</creatorcontrib><description>The development of biomimetic bone matrices is one of the major goals in the bone‐regeneration and tissue‐engineering fields. Nanocomposites consisting of a natural polymer and hydroxyapatite (HA) nanocrystals, which mimic the human bone matrix, are thus regarded as promising bone regenerative materials. Herein, we developed a biomimetic nanocomposite with a novel nanofibrous structure by employing an electrospinning (ES) method. The HA precipitate/gelatin matrix nanocomposites are lyophilized and dissolved in an organic solvent, and then electrospun under controlled conditions. With this process, we can successfully generate a continuous fiber with a diameter of the order of hundreds of nanometers. The internal structure of the nanofiber features a typical nanocomposite, i.e., HA nanocrystals well distributed within a gelatin matrix. These nanocomposite fibers improve the bone‐derived cellular activity significantly when compared to the pure gelatin equivalent. This method of generating a nanofiber of the biomimetic nanocomposite was effective in producing a biomedical membrane with a composition gradient, which is potentially applicable in the field of guided tissue regeneration (GTR). Nanofibers of gelatin–hydroxyapatite can be generated from a biomimetic nanocomposite solution by electrospinning. This methodology of generating a nanofiber of the biomedical nanocomposite is effective in producing a functional membrane with a composition gradient (gelatin/gelatin–20%HA layered nanofiber matrix, see Figure), which is potentially applicable in the field of guided tissue regeneration.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.200500116</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Biomimetics ; Nanocomposites ; Nanocomposites, polymer–nanoparticle ; Nanofibers ; polymer-nanoparticle</subject><ispartof>Advanced functional materials, 2005-12, Vol.15 (12), p.1988-1994</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3396-64b32de34100304612793bd5f3b62064fe1782e26507989e38d3a9df8200b2113</citedby><cites>FETCH-LOGICAL-c3396-64b32de34100304612793bd5f3b62064fe1782e26507989e38d3a9df8200b2113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.200500116$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45579</link.rule.ids></links><search><creatorcontrib>Kim, H.-W.</creatorcontrib><creatorcontrib>Song, J.-H.</creatorcontrib><creatorcontrib>Kim, H.-E.</creatorcontrib><title>Nanofiber Generation of Gelatin-Hydroxyapatite Biomimetics for Guided Tissue Regeneration</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>The development of biomimetic bone matrices is one of the major goals in the bone‐regeneration and tissue‐engineering fields. Nanocomposites consisting of a natural polymer and hydroxyapatite (HA) nanocrystals, which mimic the human bone matrix, are thus regarded as promising bone regenerative materials. Herein, we developed a biomimetic nanocomposite with a novel nanofibrous structure by employing an electrospinning (ES) method. The HA precipitate/gelatin matrix nanocomposites are lyophilized and dissolved in an organic solvent, and then electrospun under controlled conditions. With this process, we can successfully generate a continuous fiber with a diameter of the order of hundreds of nanometers. The internal structure of the nanofiber features a typical nanocomposite, i.e., HA nanocrystals well distributed within a gelatin matrix. These nanocomposite fibers improve the bone‐derived cellular activity significantly when compared to the pure gelatin equivalent. This method of generating a nanofiber of the biomimetic nanocomposite was effective in producing a biomedical membrane with a composition gradient, which is potentially applicable in the field of guided tissue regeneration (GTR). Nanofibers of gelatin–hydroxyapatite can be generated from a biomimetic nanocomposite solution by electrospinning. This methodology of generating a nanofiber of the biomedical nanocomposite is effective in producing a functional membrane with a composition gradient (gelatin/gelatin–20%HA layered nanofiber matrix, see Figure), which is potentially applicable in the field of guided tissue regeneration.</description><subject>Biomimetics</subject><subject>Nanocomposites</subject><subject>Nanocomposites, polymer–nanoparticle</subject><subject>Nanofibers</subject><subject>polymer-nanoparticle</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkL1PwzAUxC0EEqWwMmdiS_FH4iRjW2gLKkWqivhYLKd5RoYkLnYimv8eV0UVG9O7J93vpDuELgkeEIzptSxUNaAYxxgTwo9Qj3DCQ4ZpenzQ5OUUnTn34S1JwqIeel3I2iidgw2mUIOVjTZ1YJT_Sq_rcNYV1mw7ufFfA8FIm0pX0Oi1C5TxUKsLKIKVdq6FYAnvh5BzdKJk6eDi9_bR0-R2NZ6F88fp3Xg4D9eMZTzkUc5oASzyHRiOOKFJxvIiViznFPNIAUlSCpTHOMnSDFhaMJkVKvVNc0oI66Orfe7Gmq8WXCMq7dZQlrIG0zpBs4iklDBvHOyNa2ucs6DExupK2k4QLHYLit2C4rCgB7I98K1L6P5xi-HN5OEvG-5Z7RrYHlhpPwVPWBKL58VUzOc0Xt6PxuKN_QCkg4Og</recordid><startdate>200512</startdate><enddate>200512</enddate><creator>Kim, H.-W.</creator><creator>Song, J.-H.</creator><creator>Kim, H.-E.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>200512</creationdate><title>Nanofiber Generation of Gelatin-Hydroxyapatite Biomimetics for Guided Tissue Regeneration</title><author>Kim, H.-W. ; Song, J.-H. ; Kim, H.-E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3396-64b32de34100304612793bd5f3b62064fe1782e26507989e38d3a9df8200b2113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biomimetics</topic><topic>Nanocomposites</topic><topic>Nanocomposites, polymer–nanoparticle</topic><topic>Nanofibers</topic><topic>polymer-nanoparticle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, H.-W.</creatorcontrib><creatorcontrib>Song, J.-H.</creatorcontrib><creatorcontrib>Kim, H.-E.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, H.-W.</au><au>Song, J.-H.</au><au>Kim, H.-E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanofiber Generation of Gelatin-Hydroxyapatite Biomimetics for Guided Tissue Regeneration</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2005-12</date><risdate>2005</risdate><volume>15</volume><issue>12</issue><spage>1988</spage><epage>1994</epage><pages>1988-1994</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The development of biomimetic bone matrices is one of the major goals in the bone‐regeneration and tissue‐engineering fields. Nanocomposites consisting of a natural polymer and hydroxyapatite (HA) nanocrystals, which mimic the human bone matrix, are thus regarded as promising bone regenerative materials. Herein, we developed a biomimetic nanocomposite with a novel nanofibrous structure by employing an electrospinning (ES) method. The HA precipitate/gelatin matrix nanocomposites are lyophilized and dissolved in an organic solvent, and then electrospun under controlled conditions. With this process, we can successfully generate a continuous fiber with a diameter of the order of hundreds of nanometers. The internal structure of the nanofiber features a typical nanocomposite, i.e., HA nanocrystals well distributed within a gelatin matrix. These nanocomposite fibers improve the bone‐derived cellular activity significantly when compared to the pure gelatin equivalent. This method of generating a nanofiber of the biomimetic nanocomposite was effective in producing a biomedical membrane with a composition gradient, which is potentially applicable in the field of guided tissue regeneration (GTR). Nanofibers of gelatin–hydroxyapatite can be generated from a biomimetic nanocomposite solution by electrospinning. This methodology of generating a nanofiber of the biomedical nanocomposite is effective in producing a functional membrane with a composition gradient (gelatin/gelatin–20%HA layered nanofiber matrix, see Figure), which is potentially applicable in the field of guided tissue regeneration.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.200500116</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2005-12, Vol.15 (12), p.1988-1994
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_29418213
source Access via Wiley Online Library
subjects Biomimetics
Nanocomposites
Nanocomposites, polymer–nanoparticle
Nanofibers
polymer-nanoparticle
title Nanofiber Generation of Gelatin-Hydroxyapatite Biomimetics for Guided Tissue Regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A02%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanofiber%20Generation%20of%20Gelatin-Hydroxyapatite%20Biomimetics%20for%20Guided%20Tissue%20Regeneration&rft.jtitle=Advanced%20functional%20materials&rft.au=Kim,%20H.-W.&rft.date=2005-12&rft.volume=15&rft.issue=12&rft.spage=1988&rft.epage=1994&rft.pages=1988-1994&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.200500116&rft_dat=%3Cproquest_cross%3E29418213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29418213&rft_id=info:pmid/&rfr_iscdi=true