Numerical stochastic model for the magnetic relaxation time of the fine particle system with dipolar interactions

This paper presents the results obtained by numerical simulations, the magnetic relaxation time simulation for a fine particle system with dipolar magnetic interaction. We used a 3D simulation model for fine magnetic particles with spherical shape and lognormal distribution for their diameters. Star...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2006-06, Vol.30 (6), p.545-553
Hauptverfasser: Osaci, Mihaela, Pănoiu, Manuela, Hepuţ, Teodor, Muscalagiu, Ionel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 553
container_issue 6
container_start_page 545
container_title Applied mathematical modelling
container_volume 30
creator Osaci, Mihaela
Pănoiu, Manuela
Hepuţ, Teodor
Muscalagiu, Ionel
description This paper presents the results obtained by numerical simulations, the magnetic relaxation time simulation for a fine particle system with dipolar magnetic interaction. We used a 3D simulation model for fine magnetic particles with spherical shape and lognormal distribution for their diameters. Starting from Dormann–Bessais–Fiorani model, the 3D model we used is more realistic if we consider that the particles are randomly arranged into a preset volume, following a Gaussian distribution generated with the Box–Mueller transformation. Concerning the dependency of the average relaxation time on temperature and on the dispersion of the particle diameter’s logarithm, the analysis is achieved for three cases: without interaction, weak dipolar magnetic interaction, and strong dipolar magnetic interaction between particles. We found that the average relaxation time for the fine particle system decreases by temperature’s increasing and the average relaxation time grows by the growth of the dispersion of the random “ln d” variable.
doi_str_mv 10.1016/j.apm.2005.11.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29416529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X05002301</els_id><sourcerecordid>29416529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-bbd7b11518fa37a8614d1fc0ef84149c2afde877b04a4a12b77e7ef83b57a9b93</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhHMAiecP4OYL3Bq8iVs34oQqXlIFF5C4WRtnTV0lcWq7PP49DkXixmnlnW9m5cmyM-A5cJhdrnMcurzgfJoD5BzKveyQl1xOKi5eD7KjENY8iel1mG0etx15q7FlITq9whCtZp1rqGXGeRZXxDp862lce2rxE6N1PYu2I-bMj25sT2xAn5CWWPgKkTr2YeOKNXZwLXpm-0ge9egMJ9m-wTbQ6e88zl5ub54X95Pl093D4no50YJDnNR1I2uAKcwNlhLnMxANGM3JzAWIShdoGppLWXOBAqGopSSZxLKeSqzqqjzOLna5g3ebLYWoOhs0tS325LZBFZWA2bQYQdiB2rsQPBk1eNuh_1LA1VioWqtUqBoLVQAqFZo857_hGFJ3xmOvbfgzypQshEjc1Y6j9NN3S14FbanX1FhPOqrG2X-ufANhfZAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29416529</pqid></control><display><type>article</type><title>Numerical stochastic model for the magnetic relaxation time of the fine particle system with dipolar interactions</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB Electronic Journals Library</source><creator>Osaci, Mihaela ; Pănoiu, Manuela ; Hepuţ, Teodor ; Muscalagiu, Ionel</creator><creatorcontrib>Osaci, Mihaela ; Pănoiu, Manuela ; Hepuţ, Teodor ; Muscalagiu, Ionel</creatorcontrib><description>This paper presents the results obtained by numerical simulations, the magnetic relaxation time simulation for a fine particle system with dipolar magnetic interaction. We used a 3D simulation model for fine magnetic particles with spherical shape and lognormal distribution for their diameters. Starting from Dormann–Bessais–Fiorani model, the 3D model we used is more realistic if we consider that the particles are randomly arranged into a preset volume, following a Gaussian distribution generated with the Box–Mueller transformation. Concerning the dependency of the average relaxation time on temperature and on the dispersion of the particle diameter’s logarithm, the analysis is achieved for three cases: without interaction, weak dipolar magnetic interaction, and strong dipolar magnetic interaction between particles. We found that the average relaxation time for the fine particle system decreases by temperature’s increasing and the average relaxation time grows by the growth of the dispersion of the random “ln d” variable.</description><identifier>ISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2005.11.013</identifier><identifier>CODEN: AMMODL</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Applied classical electromagnetism ; Dipolar interaction ; Electromagnetic wave propagation, radiowave propagation ; Electromagnetism; electron and ion optics ; Exact sciences and technology ; Fine particles ; Fundamental areas of phenomenology (including applications) ; Numerical simulation ; Physics ; Relaxation process ; Relaxation time</subject><ispartof>Applied mathematical modelling, 2006-06, Vol.30 (6), p.545-553</ispartof><rights>2005 Elsevier Inc.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-bbd7b11518fa37a8614d1fc0ef84149c2afde877b04a4a12b77e7ef83b57a9b93</citedby><cites>FETCH-LOGICAL-c401t-bbd7b11518fa37a8614d1fc0ef84149c2afde877b04a4a12b77e7ef83b57a9b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0307904X05002301$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17652444$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Osaci, Mihaela</creatorcontrib><creatorcontrib>Pănoiu, Manuela</creatorcontrib><creatorcontrib>Hepuţ, Teodor</creatorcontrib><creatorcontrib>Muscalagiu, Ionel</creatorcontrib><title>Numerical stochastic model for the magnetic relaxation time of the fine particle system with dipolar interactions</title><title>Applied mathematical modelling</title><description>This paper presents the results obtained by numerical simulations, the magnetic relaxation time simulation for a fine particle system with dipolar magnetic interaction. We used a 3D simulation model for fine magnetic particles with spherical shape and lognormal distribution for their diameters. Starting from Dormann–Bessais–Fiorani model, the 3D model we used is more realistic if we consider that the particles are randomly arranged into a preset volume, following a Gaussian distribution generated with the Box–Mueller transformation. Concerning the dependency of the average relaxation time on temperature and on the dispersion of the particle diameter’s logarithm, the analysis is achieved for three cases: without interaction, weak dipolar magnetic interaction, and strong dipolar magnetic interaction between particles. We found that the average relaxation time for the fine particle system decreases by temperature’s increasing and the average relaxation time grows by the growth of the dispersion of the random “ln d” variable.</description><subject>Applied classical electromagnetism</subject><subject>Dipolar interaction</subject><subject>Electromagnetic wave propagation, radiowave propagation</subject><subject>Electromagnetism; electron and ion optics</subject><subject>Exact sciences and technology</subject><subject>Fine particles</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Numerical simulation</subject><subject>Physics</subject><subject>Relaxation process</subject><subject>Relaxation time</subject><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhHMAiecP4OYL3Bq8iVs34oQqXlIFF5C4WRtnTV0lcWq7PP49DkXixmnlnW9m5cmyM-A5cJhdrnMcurzgfJoD5BzKveyQl1xOKi5eD7KjENY8iel1mG0etx15q7FlITq9whCtZp1rqGXGeRZXxDp862lce2rxE6N1PYu2I-bMj25sT2xAn5CWWPgKkTr2YeOKNXZwLXpm-0ge9egMJ9m-wTbQ6e88zl5ub54X95Pl093D4no50YJDnNR1I2uAKcwNlhLnMxANGM3JzAWIShdoGppLWXOBAqGopSSZxLKeSqzqqjzOLna5g3ebLYWoOhs0tS325LZBFZWA2bQYQdiB2rsQPBk1eNuh_1LA1VioWqtUqBoLVQAqFZo857_hGFJ3xmOvbfgzypQshEjc1Y6j9NN3S14FbanX1FhPOqrG2X-ufANhfZAA</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Osaci, Mihaela</creator><creator>Pănoiu, Manuela</creator><creator>Hepuţ, Teodor</creator><creator>Muscalagiu, Ionel</creator><general>Elsevier Inc</general><general>Elsevier Science</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060601</creationdate><title>Numerical stochastic model for the magnetic relaxation time of the fine particle system with dipolar interactions</title><author>Osaci, Mihaela ; Pănoiu, Manuela ; Hepuţ, Teodor ; Muscalagiu, Ionel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-bbd7b11518fa37a8614d1fc0ef84149c2afde877b04a4a12b77e7ef83b57a9b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied classical electromagnetism</topic><topic>Dipolar interaction</topic><topic>Electromagnetic wave propagation, radiowave propagation</topic><topic>Electromagnetism; electron and ion optics</topic><topic>Exact sciences and technology</topic><topic>Fine particles</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Numerical simulation</topic><topic>Physics</topic><topic>Relaxation process</topic><topic>Relaxation time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osaci, Mihaela</creatorcontrib><creatorcontrib>Pănoiu, Manuela</creatorcontrib><creatorcontrib>Hepuţ, Teodor</creatorcontrib><creatorcontrib>Muscalagiu, Ionel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osaci, Mihaela</au><au>Pănoiu, Manuela</au><au>Hepuţ, Teodor</au><au>Muscalagiu, Ionel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical stochastic model for the magnetic relaxation time of the fine particle system with dipolar interactions</atitle><jtitle>Applied mathematical modelling</jtitle><date>2006-06-01</date><risdate>2006</risdate><volume>30</volume><issue>6</issue><spage>545</spage><epage>553</epage><pages>545-553</pages><issn>0307-904X</issn><coden>AMMODL</coden><abstract>This paper presents the results obtained by numerical simulations, the magnetic relaxation time simulation for a fine particle system with dipolar magnetic interaction. We used a 3D simulation model for fine magnetic particles with spherical shape and lognormal distribution for their diameters. Starting from Dormann–Bessais–Fiorani model, the 3D model we used is more realistic if we consider that the particles are randomly arranged into a preset volume, following a Gaussian distribution generated with the Box–Mueller transformation. Concerning the dependency of the average relaxation time on temperature and on the dispersion of the particle diameter’s logarithm, the analysis is achieved for three cases: without interaction, weak dipolar magnetic interaction, and strong dipolar magnetic interaction between particles. We found that the average relaxation time for the fine particle system decreases by temperature’s increasing and the average relaxation time grows by the growth of the dispersion of the random “ln d” variable.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2005.11.013</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied mathematical modelling, 2006-06, Vol.30 (6), p.545-553
issn 0307-904X
language eng
recordid cdi_proquest_miscellaneous_29416529
source Elsevier ScienceDirect Journals Complete; EZB Electronic Journals Library
subjects Applied classical electromagnetism
Dipolar interaction
Electromagnetic wave propagation, radiowave propagation
Electromagnetism
electron and ion optics
Exact sciences and technology
Fine particles
Fundamental areas of phenomenology (including applications)
Numerical simulation
Physics
Relaxation process
Relaxation time
title Numerical stochastic model for the magnetic relaxation time of the fine particle system with dipolar interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20stochastic%20model%20for%20the%20magnetic%20relaxation%20time%20of%20the%20fine%20particle%20system%20with%20dipolar%20interactions&rft.jtitle=Applied%20mathematical%20modelling&rft.au=Osaci,%20Mihaela&rft.date=2006-06-01&rft.volume=30&rft.issue=6&rft.spage=545&rft.epage=553&rft.pages=545-553&rft.issn=0307-904X&rft.coden=AMMODL&rft_id=info:doi/10.1016/j.apm.2005.11.013&rft_dat=%3Cproquest_cross%3E29416529%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29416529&rft_id=info:pmid/&rft_els_id=S0307904X05002301&rfr_iscdi=true