Multiaxial fatigue limit criterion for defective materials
The objective of this paper is to quantify the influence of defect on the fatigue limit. Elastic–plastic simulations are conducted to determine the stress distribution around defects for different geometries and different loading. It is shown that a relevant mechanical parameter governing the fatigu...
Gespeichert in:
Veröffentlicht in: | Engineering fracture mechanics 2006, Vol.73 (1), p.112-133 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 133 |
---|---|
container_issue | 1 |
container_start_page | 112 |
container_title | Engineering fracture mechanics |
container_volume | 73 |
creator | Nadot, Y. Billaudeau, T. |
description | The objective of this paper is to quantify the influence of defect on the fatigue limit. Elastic–plastic simulations are conducted to determine the stress distribution around defects for different geometries and different loading. It is shown that a relevant mechanical parameter governing the fatigue limit for defect material could be the gradient of the hydrostatic stress. A multiaxial fatigue criterion is identified with three parameters and validated for different metallic materials under multiaxial conditions. Results are good and show that the gradient of the hydrostatic stress is a good parameter to characterise the influence of a defect on the fatigue behaviour. |
doi_str_mv | 10.1016/j.engfracmech.2005.06.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29401043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794405001645</els_id><sourcerecordid>29401043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-4a90ac027374a26e52d8b3c3d0e9218da5b937743a213b7eaf2f9801f71b63a3</originalsourceid><addsrcrecordid>eNqNkM1LAzEQxYMoWKv_w3rQW9dJst1svEnxCypeeg_T7KSm7EdNtkX_e1Na0KOnNwy_eY95jF1zyDnw8m6dU7dyAW1L9iMXANMcyjzJCRvxSsmJknx6ykYAPM26KM7ZRYxrAFBlBSN2_7ZtBo9fHpvM4eBXW8oa3_ohs8EPFHzfZa4PWU2O7OB3lLW4X2MTL9mZS0JXRx2zxdPjYvYymb8_v84e5hMrKzFMCtSAFoSSqkBR0lTU1VJaWQNpwasap0stlSokCi6XitAJpyvgTvFlKVGO2e3BdhP6zy3FwbQ-Wmoa7KjfRiN0ARwKmUB9AG3oYwzkzCb4FsO34WD2ZZm1-VOW2ZdloDRJ0u3NMQSjxSYxnfXx10CJUleaJ2524Cg9vPMUTLSeOku1D6kfU_f-H2k_ZQqFkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29401043</pqid></control><display><type>article</type><title>Multiaxial fatigue limit criterion for defective materials</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Nadot, Y. ; Billaudeau, T.</creator><creatorcontrib>Nadot, Y. ; Billaudeau, T.</creatorcontrib><description>The objective of this paper is to quantify the influence of defect on the fatigue limit. Elastic–plastic simulations are conducted to determine the stress distribution around defects for different geometries and different loading. It is shown that a relevant mechanical parameter governing the fatigue limit for defect material could be the gradient of the hydrostatic stress. A multiaxial fatigue criterion is identified with three parameters and validated for different metallic materials under multiaxial conditions. Results are good and show that the gradient of the hydrostatic stress is a good parameter to characterise the influence of a defect on the fatigue behaviour.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2005.06.005</identifier><identifier>CODEN: EFMEAH</identifier><language>eng</language><publisher>Tarrytown, NY: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial defect ; Casting defect ; Exact sciences and technology ; Fatigue limit ; Foundry engineering ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Gradient effect ; Inelasticity (thermoplasticity, viscoplasticity...) ; Metals. Metallurgy ; Multiaxial criterion ; Other casting methods. Solidification ; Physics ; Production techniques ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Engineering fracture mechanics, 2006, Vol.73 (1), p.112-133</ispartof><rights>2005 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-4a90ac027374a26e52d8b3c3d0e9218da5b937743a213b7eaf2f9801f71b63a3</citedby><cites>FETCH-LOGICAL-c382t-4a90ac027374a26e52d8b3c3d0e9218da5b937743a213b7eaf2f9801f71b63a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engfracmech.2005.06.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17269891$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nadot, Y.</creatorcontrib><creatorcontrib>Billaudeau, T.</creatorcontrib><title>Multiaxial fatigue limit criterion for defective materials</title><title>Engineering fracture mechanics</title><description>The objective of this paper is to quantify the influence of defect on the fatigue limit. Elastic–plastic simulations are conducted to determine the stress distribution around defects for different geometries and different loading. It is shown that a relevant mechanical parameter governing the fatigue limit for defect material could be the gradient of the hydrostatic stress. A multiaxial fatigue criterion is identified with three parameters and validated for different metallic materials under multiaxial conditions. Results are good and show that the gradient of the hydrostatic stress is a good parameter to characterise the influence of a defect on the fatigue behaviour.</description><subject>Applied sciences</subject><subject>Artificial defect</subject><subject>Casting defect</subject><subject>Exact sciences and technology</subject><subject>Fatigue limit</subject><subject>Foundry engineering</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gradient effect</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Metals. Metallurgy</subject><subject>Multiaxial criterion</subject><subject>Other casting methods. Solidification</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkM1LAzEQxYMoWKv_w3rQW9dJst1svEnxCypeeg_T7KSm7EdNtkX_e1Na0KOnNwy_eY95jF1zyDnw8m6dU7dyAW1L9iMXANMcyjzJCRvxSsmJknx6ykYAPM26KM7ZRYxrAFBlBSN2_7ZtBo9fHpvM4eBXW8oa3_ohs8EPFHzfZa4PWU2O7OB3lLW4X2MTL9mZS0JXRx2zxdPjYvYymb8_v84e5hMrKzFMCtSAFoSSqkBR0lTU1VJaWQNpwasap0stlSokCi6XitAJpyvgTvFlKVGO2e3BdhP6zy3FwbQ-Wmoa7KjfRiN0ARwKmUB9AG3oYwzkzCb4FsO34WD2ZZm1-VOW2ZdloDRJ0u3NMQSjxSYxnfXx10CJUleaJ2524Cg9vPMUTLSeOku1D6kfU_f-H2k_ZQqFkQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Nadot, Y.</creator><creator>Billaudeau, T.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>2006</creationdate><title>Multiaxial fatigue limit criterion for defective materials</title><author>Nadot, Y. ; Billaudeau, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-4a90ac027374a26e52d8b3c3d0e9218da5b937743a213b7eaf2f9801f71b63a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial defect</topic><topic>Casting defect</topic><topic>Exact sciences and technology</topic><topic>Fatigue limit</topic><topic>Foundry engineering</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gradient effect</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Metals. Metallurgy</topic><topic>Multiaxial criterion</topic><topic>Other casting methods. Solidification</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadot, Y.</creatorcontrib><creatorcontrib>Billaudeau, T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadot, Y.</au><au>Billaudeau, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiaxial fatigue limit criterion for defective materials</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2006</date><risdate>2006</risdate><volume>73</volume><issue>1</issue><spage>112</spage><epage>133</epage><pages>112-133</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><coden>EFMEAH</coden><abstract>The objective of this paper is to quantify the influence of defect on the fatigue limit. Elastic–plastic simulations are conducted to determine the stress distribution around defects for different geometries and different loading. It is shown that a relevant mechanical parameter governing the fatigue limit for defect material could be the gradient of the hydrostatic stress. A multiaxial fatigue criterion is identified with three parameters and validated for different metallic materials under multiaxial conditions. Results are good and show that the gradient of the hydrostatic stress is a good parameter to characterise the influence of a defect on the fatigue behaviour.</abstract><cop>Tarrytown, NY</cop><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2005.06.005</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-7944 |
ispartof | Engineering fracture mechanics, 2006, Vol.73 (1), p.112-133 |
issn | 0013-7944 1873-7315 |
language | eng |
recordid | cdi_proquest_miscellaneous_29401043 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Artificial defect Casting defect Exact sciences and technology Fatigue limit Foundry engineering Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) Gradient effect Inelasticity (thermoplasticity, viscoplasticity...) Metals. Metallurgy Multiaxial criterion Other casting methods. Solidification Physics Production techniques Solid mechanics Structural and continuum mechanics |
title | Multiaxial fatigue limit criterion for defective materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiaxial%20fatigue%20limit%20criterion%20for%20defective%20materials&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Nadot,%20Y.&rft.date=2006&rft.volume=73&rft.issue=1&rft.spage=112&rft.epage=133&rft.pages=112-133&rft.issn=0013-7944&rft.eissn=1873-7315&rft.coden=EFMEAH&rft_id=info:doi/10.1016/j.engfracmech.2005.06.005&rft_dat=%3Cproquest_cross%3E29401043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29401043&rft_id=info:pmid/&rft_els_id=S0013794405001645&rfr_iscdi=true |