Multiaxial fatigue limit criterion for defective materials

The objective of this paper is to quantify the influence of defect on the fatigue limit. Elastic–plastic simulations are conducted to determine the stress distribution around defects for different geometries and different loading. It is shown that a relevant mechanical parameter governing the fatigu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2006, Vol.73 (1), p.112-133
Hauptverfasser: Nadot, Y., Billaudeau, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 1
container_start_page 112
container_title Engineering fracture mechanics
container_volume 73
creator Nadot, Y.
Billaudeau, T.
description The objective of this paper is to quantify the influence of defect on the fatigue limit. Elastic–plastic simulations are conducted to determine the stress distribution around defects for different geometries and different loading. It is shown that a relevant mechanical parameter governing the fatigue limit for defect material could be the gradient of the hydrostatic stress. A multiaxial fatigue criterion is identified with three parameters and validated for different metallic materials under multiaxial conditions. Results are good and show that the gradient of the hydrostatic stress is a good parameter to characterise the influence of a defect on the fatigue behaviour.
doi_str_mv 10.1016/j.engfracmech.2005.06.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29401043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794405001645</els_id><sourcerecordid>29401043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-4a90ac027374a26e52d8b3c3d0e9218da5b937743a213b7eaf2f9801f71b63a3</originalsourceid><addsrcrecordid>eNqNkM1LAzEQxYMoWKv_w3rQW9dJst1svEnxCypeeg_T7KSm7EdNtkX_e1Na0KOnNwy_eY95jF1zyDnw8m6dU7dyAW1L9iMXANMcyjzJCRvxSsmJknx6ykYAPM26KM7ZRYxrAFBlBSN2_7ZtBo9fHpvM4eBXW8oa3_ohs8EPFHzfZa4PWU2O7OB3lLW4X2MTL9mZS0JXRx2zxdPjYvYymb8_v84e5hMrKzFMCtSAFoSSqkBR0lTU1VJaWQNpwasap0stlSokCi6XitAJpyvgTvFlKVGO2e3BdhP6zy3FwbQ-Wmoa7KjfRiN0ARwKmUB9AG3oYwzkzCb4FsO34WD2ZZm1-VOW2ZdloDRJ0u3NMQSjxSYxnfXx10CJUleaJ2524Cg9vPMUTLSeOku1D6kfU_f-H2k_ZQqFkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29401043</pqid></control><display><type>article</type><title>Multiaxial fatigue limit criterion for defective materials</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Nadot, Y. ; Billaudeau, T.</creator><creatorcontrib>Nadot, Y. ; Billaudeau, T.</creatorcontrib><description>The objective of this paper is to quantify the influence of defect on the fatigue limit. Elastic–plastic simulations are conducted to determine the stress distribution around defects for different geometries and different loading. It is shown that a relevant mechanical parameter governing the fatigue limit for defect material could be the gradient of the hydrostatic stress. A multiaxial fatigue criterion is identified with three parameters and validated for different metallic materials under multiaxial conditions. Results are good and show that the gradient of the hydrostatic stress is a good parameter to characterise the influence of a defect on the fatigue behaviour.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2005.06.005</identifier><identifier>CODEN: EFMEAH</identifier><language>eng</language><publisher>Tarrytown, NY: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial defect ; Casting defect ; Exact sciences and technology ; Fatigue limit ; Foundry engineering ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Gradient effect ; Inelasticity (thermoplasticity, viscoplasticity...) ; Metals. Metallurgy ; Multiaxial criterion ; Other casting methods. Solidification ; Physics ; Production techniques ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>Engineering fracture mechanics, 2006, Vol.73 (1), p.112-133</ispartof><rights>2005 Elsevier Ltd</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-4a90ac027374a26e52d8b3c3d0e9218da5b937743a213b7eaf2f9801f71b63a3</citedby><cites>FETCH-LOGICAL-c382t-4a90ac027374a26e52d8b3c3d0e9218da5b937743a213b7eaf2f9801f71b63a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engfracmech.2005.06.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17269891$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nadot, Y.</creatorcontrib><creatorcontrib>Billaudeau, T.</creatorcontrib><title>Multiaxial fatigue limit criterion for defective materials</title><title>Engineering fracture mechanics</title><description>The objective of this paper is to quantify the influence of defect on the fatigue limit. Elastic–plastic simulations are conducted to determine the stress distribution around defects for different geometries and different loading. It is shown that a relevant mechanical parameter governing the fatigue limit for defect material could be the gradient of the hydrostatic stress. A multiaxial fatigue criterion is identified with three parameters and validated for different metallic materials under multiaxial conditions. Results are good and show that the gradient of the hydrostatic stress is a good parameter to characterise the influence of a defect on the fatigue behaviour.</description><subject>Applied sciences</subject><subject>Artificial defect</subject><subject>Casting defect</subject><subject>Exact sciences and technology</subject><subject>Fatigue limit</subject><subject>Foundry engineering</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gradient effect</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>Metals. Metallurgy</subject><subject>Multiaxial criterion</subject><subject>Other casting methods. Solidification</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkM1LAzEQxYMoWKv_w3rQW9dJst1svEnxCypeeg_T7KSm7EdNtkX_e1Na0KOnNwy_eY95jF1zyDnw8m6dU7dyAW1L9iMXANMcyjzJCRvxSsmJknx6ykYAPM26KM7ZRYxrAFBlBSN2_7ZtBo9fHpvM4eBXW8oa3_ohs8EPFHzfZa4PWU2O7OB3lLW4X2MTL9mZS0JXRx2zxdPjYvYymb8_v84e5hMrKzFMCtSAFoSSqkBR0lTU1VJaWQNpwasap0stlSokCi6XitAJpyvgTvFlKVGO2e3BdhP6zy3FwbQ-Wmoa7KjfRiN0ARwKmUB9AG3oYwzkzCb4FsO34WD2ZZm1-VOW2ZdloDRJ0u3NMQSjxSYxnfXx10CJUleaJ2524Cg9vPMUTLSeOku1D6kfU_f-H2k_ZQqFkQ</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Nadot, Y.</creator><creator>Billaudeau, T.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>2006</creationdate><title>Multiaxial fatigue limit criterion for defective materials</title><author>Nadot, Y. ; Billaudeau, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-4a90ac027374a26e52d8b3c3d0e9218da5b937743a213b7eaf2f9801f71b63a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Artificial defect</topic><topic>Casting defect</topic><topic>Exact sciences and technology</topic><topic>Fatigue limit</topic><topic>Foundry engineering</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gradient effect</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>Metals. Metallurgy</topic><topic>Multiaxial criterion</topic><topic>Other casting methods. Solidification</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadot, Y.</creatorcontrib><creatorcontrib>Billaudeau, T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadot, Y.</au><au>Billaudeau, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiaxial fatigue limit criterion for defective materials</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2006</date><risdate>2006</risdate><volume>73</volume><issue>1</issue><spage>112</spage><epage>133</epage><pages>112-133</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><coden>EFMEAH</coden><abstract>The objective of this paper is to quantify the influence of defect on the fatigue limit. Elastic–plastic simulations are conducted to determine the stress distribution around defects for different geometries and different loading. It is shown that a relevant mechanical parameter governing the fatigue limit for defect material could be the gradient of the hydrostatic stress. A multiaxial fatigue criterion is identified with three parameters and validated for different metallic materials under multiaxial conditions. Results are good and show that the gradient of the hydrostatic stress is a good parameter to characterise the influence of a defect on the fatigue behaviour.</abstract><cop>Tarrytown, NY</cop><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2005.06.005</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2006, Vol.73 (1), p.112-133
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_miscellaneous_29401043
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
Artificial defect
Casting defect
Exact sciences and technology
Fatigue limit
Foundry engineering
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Gradient effect
Inelasticity (thermoplasticity, viscoplasticity...)
Metals. Metallurgy
Multiaxial criterion
Other casting methods. Solidification
Physics
Production techniques
Solid mechanics
Structural and continuum mechanics
title Multiaxial fatigue limit criterion for defective materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiaxial%20fatigue%20limit%20criterion%20for%20defective%20materials&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Nadot,%20Y.&rft.date=2006&rft.volume=73&rft.issue=1&rft.spage=112&rft.epage=133&rft.pages=112-133&rft.issn=0013-7944&rft.eissn=1873-7315&rft.coden=EFMEAH&rft_id=info:doi/10.1016/j.engfracmech.2005.06.005&rft_dat=%3Cproquest_cross%3E29401043%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29401043&rft_id=info:pmid/&rft_els_id=S0013794405001645&rfr_iscdi=true