Monitoring and Fault Diagnosis for Batch Process Based on Feature Extract in Fisher Subspace

Multivariate statistical process control methods have been widely used in biochemical industries. Batch process is usually monitored by the method of multi-way principal component analysis (MPCA). In this article, a new batch process monitoring and fault diagnosis method based on feature extract in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of chemical engineering 2006-12, Vol.14 (6X), p.759-764
1. Verfasser: 赵旭 阎威武 邵惠鹤
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 764
container_issue 6X
container_start_page 759
container_title Chinese journal of chemical engineering
container_volume 14
creator 赵旭 阎威武 邵惠鹤
description Multivariate statistical process control methods have been widely used in biochemical industries. Batch process is usually monitored by the method of multi-way principal component analysis (MPCA). In this article, a new batch process monitoring and fault diagnosis method based on feature extract in Fisher subspace is proposed. The feature vector and the feature direction are extracted by projecting the high-dimension process data onto the low-dimension Fisher space. The similarity of feature vector between the current and the reference batch is calculated for on-line process monitoring and the contribution plot of weights in feature direction is calculated for fault diagnosis. The approach overcomes the need for estimating or filling in the unknown portion of the process variables trajectories from the current time to the end of the batch. Simulation results on the benchmark model of penicillin fermentation process can demonstrate that in comparison to the MPCA method, the proposed method is more accurate and efficient for process monitoring and fault diagnosis.
doi_str_mv 10.1016/S1004-9541(07)60008-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29396610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>690727167200606007</cqvip_id><sourcerecordid>29396610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-4600b3f46226a0a77b398e417df60e015711750c331d149b93d6abfb42aee4a23</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4MoOKcfQciTKFK9S9qkfdS5qTBRmIIPQkjTdKt0zZa0oN_ezo1xD8cdv_9x_Ag5R7hBQHE7Q4A4ypIYL0FeCQBIIzwgA8YQIs7w85AM9sgxOQnhG4BBiumAfL24pmqdr5o51U1BJ7qrW_pQ6XnjQhVo6Ty9161Z0DfvjA2hn4ItqGvoxOq285aOf1qvTUurflWFhfV01uVhpY09JUelroM92_Uh-ZiM30dP0fT18Xl0N40MS6CN4v7lnJexYExo0FLmPEttjLIoBVjARCLKBAznWGCc5RkvhM7LPGba2lgzPiQX27sr79adDa1aVsHYutaNdV1QLOOZEAg9mGxB410I3pZq5aul9r8KQW1cqn-XaiNKgVT_LhX2uetdbuGa-bqXtQ-KDCSTKCQDEH2B5H_h43Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29396610</pqid></control><display><type>article</type><title>Monitoring and Fault Diagnosis for Batch Process Based on Feature Extract in Fisher Subspace</title><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><creator>赵旭 阎威武 邵惠鹤</creator><creatorcontrib>赵旭 阎威武 邵惠鹤</creatorcontrib><description>Multivariate statistical process control methods have been widely used in biochemical industries. Batch process is usually monitored by the method of multi-way principal component analysis (MPCA). In this article, a new batch process monitoring and fault diagnosis method based on feature extract in Fisher subspace is proposed. The feature vector and the feature direction are extracted by projecting the high-dimension process data onto the low-dimension Fisher space. The similarity of feature vector between the current and the reference batch is calculated for on-line process monitoring and the contribution plot of weights in feature direction is calculated for fault diagnosis. The approach overcomes the need for estimating or filling in the unknown portion of the process variables trajectories from the current time to the end of the batch. Simulation results on the benchmark model of penicillin fermentation process can demonstrate that in comparison to the MPCA method, the proposed method is more accurate and efficient for process monitoring and fault diagnosis.</description><identifier>ISSN: 1004-9541</identifier><identifier>EISSN: 2210-321X</identifier><identifier>DOI: 10.1016/S1004-9541(07)60008-1</identifier><language>eng</language><subject>analysis ; batch ; diagnosis ; discriminant ; extract ; fault ; feature ; fermentatio ; Fisher ; monitoring ; penicillin</subject><ispartof>Chinese journal of chemical engineering, 2006-12, Vol.14 (6X), p.759-764</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c250t-4600b3f46226a0a77b398e417df60e015711750c331d149b93d6abfb42aee4a23</citedby><cites>FETCH-LOGICAL-c250t-4600b3f46226a0a77b398e417df60e015711750c331d149b93d6abfb42aee4a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84275X/84275X.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>赵旭 阎威武 邵惠鹤</creatorcontrib><title>Monitoring and Fault Diagnosis for Batch Process Based on Feature Extract in Fisher Subspace</title><title>Chinese journal of chemical engineering</title><addtitle>Chinese Journal of Chemical Engineering</addtitle><description>Multivariate statistical process control methods have been widely used in biochemical industries. Batch process is usually monitored by the method of multi-way principal component analysis (MPCA). In this article, a new batch process monitoring and fault diagnosis method based on feature extract in Fisher subspace is proposed. The feature vector and the feature direction are extracted by projecting the high-dimension process data onto the low-dimension Fisher space. The similarity of feature vector between the current and the reference batch is calculated for on-line process monitoring and the contribution plot of weights in feature direction is calculated for fault diagnosis. The approach overcomes the need for estimating or filling in the unknown portion of the process variables trajectories from the current time to the end of the batch. Simulation results on the benchmark model of penicillin fermentation process can demonstrate that in comparison to the MPCA method, the proposed method is more accurate and efficient for process monitoring and fault diagnosis.</description><subject>analysis</subject><subject>batch</subject><subject>diagnosis</subject><subject>discriminant</subject><subject>extract</subject><subject>fault</subject><subject>feature</subject><subject>fermentatio</subject><subject>Fisher</subject><subject>monitoring</subject><subject>penicillin</subject><issn>1004-9541</issn><issn>2210-321X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAQx4MoOKcfQciTKFK9S9qkfdS5qTBRmIIPQkjTdKt0zZa0oN_ezo1xD8cdv_9x_Ag5R7hBQHE7Q4A4ypIYL0FeCQBIIzwgA8YQIs7w85AM9sgxOQnhG4BBiumAfL24pmqdr5o51U1BJ7qrW_pQ6XnjQhVo6Ty9161Z0DfvjA2hn4ItqGvoxOq285aOf1qvTUurflWFhfV01uVhpY09JUelroM92_Uh-ZiM30dP0fT18Xl0N40MS6CN4v7lnJexYExo0FLmPEttjLIoBVjARCLKBAznWGCc5RkvhM7LPGba2lgzPiQX27sr79adDa1aVsHYutaNdV1QLOOZEAg9mGxB410I3pZq5aul9r8KQW1cqn-XaiNKgVT_LhX2uetdbuGa-bqXtQ-KDCSTKCQDEH2B5H_h43Ow</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>赵旭 阎威武 邵惠鹤</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20061201</creationdate><title>Monitoring and Fault Diagnosis for Batch Process Based on Feature Extract in Fisher Subspace</title><author>赵旭 阎威武 邵惠鹤</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-4600b3f46226a0a77b398e417df60e015711750c331d149b93d6abfb42aee4a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>analysis</topic><topic>batch</topic><topic>diagnosis</topic><topic>discriminant</topic><topic>extract</topic><topic>fault</topic><topic>feature</topic><topic>fermentatio</topic><topic>Fisher</topic><topic>monitoring</topic><topic>penicillin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>赵旭 阎威武 邵惠鹤</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>赵旭 阎威武 邵惠鹤</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring and Fault Diagnosis for Batch Process Based on Feature Extract in Fisher Subspace</atitle><jtitle>Chinese journal of chemical engineering</jtitle><addtitle>Chinese Journal of Chemical Engineering</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>14</volume><issue>6X</issue><spage>759</spage><epage>764</epage><pages>759-764</pages><issn>1004-9541</issn><eissn>2210-321X</eissn><abstract>Multivariate statistical process control methods have been widely used in biochemical industries. Batch process is usually monitored by the method of multi-way principal component analysis (MPCA). In this article, a new batch process monitoring and fault diagnosis method based on feature extract in Fisher subspace is proposed. The feature vector and the feature direction are extracted by projecting the high-dimension process data onto the low-dimension Fisher space. The similarity of feature vector between the current and the reference batch is calculated for on-line process monitoring and the contribution plot of weights in feature direction is calculated for fault diagnosis. The approach overcomes the need for estimating or filling in the unknown portion of the process variables trajectories from the current time to the end of the batch. Simulation results on the benchmark model of penicillin fermentation process can demonstrate that in comparison to the MPCA method, the proposed method is more accurate and efficient for process monitoring and fault diagnosis.</abstract><doi>10.1016/S1004-9541(07)60008-1</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1004-9541
ispartof Chinese journal of chemical engineering, 2006-12, Vol.14 (6X), p.759-764
issn 1004-9541
2210-321X
language eng
recordid cdi_proquest_miscellaneous_29396610
source Elsevier ScienceDirect Journals; Alma/SFX Local Collection
subjects analysis
batch
diagnosis
discriminant
extract
fault
feature
fermentatio
Fisher
monitoring
penicillin
title Monitoring and Fault Diagnosis for Batch Process Based on Feature Extract in Fisher Subspace
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20and%20Fault%20Diagnosis%20for%20Batch%20Process%20Based%20on%20Feature%20Extract%20in%20Fisher%20Subspace&rft.jtitle=Chinese%20journal%20of%20chemical%20engineering&rft.au=%E8%B5%B5%E6%97%AD%20%E9%98%8E%E5%A8%81%E6%AD%A6%20%E9%82%B5%E6%83%A0%E9%B9%A4&rft.date=2006-12-01&rft.volume=14&rft.issue=6X&rft.spage=759&rft.epage=764&rft.pages=759-764&rft.issn=1004-9541&rft.eissn=2210-321X&rft_id=info:doi/10.1016/S1004-9541(07)60008-1&rft_dat=%3Cproquest_cross%3E29396610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29396610&rft_id=info:pmid/&rft_cqvip_id=690727167200606007&rfr_iscdi=true