Monitoring and Fault Diagnosis for Batch Process Based on Feature Extract in Fisher Subspace
Multivariate statistical process control methods have been widely used in biochemical industries. Batch process is usually monitored by the method of multi-way principal component analysis (MPCA). In this article, a new batch process monitoring and fault diagnosis method based on feature extract in...
Gespeichert in:
Veröffentlicht in: | Chinese journal of chemical engineering 2006-12, Vol.14 (6X), p.759-764 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 764 |
---|---|
container_issue | 6X |
container_start_page | 759 |
container_title | Chinese journal of chemical engineering |
container_volume | 14 |
creator | 赵旭 阎威武 邵惠鹤 |
description | Multivariate statistical process control methods have been widely used in biochemical industries. Batch process is usually monitored by the method of multi-way principal component analysis (MPCA). In this article, a new batch process monitoring and fault diagnosis method based on feature extract in Fisher subspace is proposed. The feature vector and the feature direction are extracted by projecting the high-dimension process data onto the low-dimension Fisher space. The similarity of feature vector between the current and the reference batch is calculated for on-line process monitoring and the contribution plot of weights in feature direction is calculated for fault diagnosis. The approach overcomes the need for estimating or filling in the unknown portion of the process variables trajectories from the current time to the end of the batch. Simulation results on the benchmark model of penicillin fermentation process can demonstrate that in comparison to the MPCA method, the proposed method is more accurate and efficient for process monitoring and fault diagnosis. |
doi_str_mv | 10.1016/S1004-9541(07)60008-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29396610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>690727167200606007</cqvip_id><sourcerecordid>29396610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-4600b3f46226a0a77b398e417df60e015711750c331d149b93d6abfb42aee4a23</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4MoOKcfQciTKFK9S9qkfdS5qTBRmIIPQkjTdKt0zZa0oN_ezo1xD8cdv_9x_Ag5R7hBQHE7Q4A4ypIYL0FeCQBIIzwgA8YQIs7w85AM9sgxOQnhG4BBiumAfL24pmqdr5o51U1BJ7qrW_pQ6XnjQhVo6Ty9161Z0DfvjA2hn4ItqGvoxOq285aOf1qvTUurflWFhfV01uVhpY09JUelroM92_Uh-ZiM30dP0fT18Xl0N40MS6CN4v7lnJexYExo0FLmPEttjLIoBVjARCLKBAznWGCc5RkvhM7LPGba2lgzPiQX27sr79adDa1aVsHYutaNdV1QLOOZEAg9mGxB410I3pZq5aul9r8KQW1cqn-XaiNKgVT_LhX2uetdbuGa-bqXtQ-KDCSTKCQDEH2B5H_h43Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29396610</pqid></control><display><type>article</type><title>Monitoring and Fault Diagnosis for Batch Process Based on Feature Extract in Fisher Subspace</title><source>Elsevier ScienceDirect Journals</source><source>Alma/SFX Local Collection</source><creator>赵旭 阎威武 邵惠鹤</creator><creatorcontrib>赵旭 阎威武 邵惠鹤</creatorcontrib><description>Multivariate statistical process control methods have been widely used in biochemical industries. Batch process is usually monitored by the method of multi-way principal component analysis (MPCA). In this article, a new batch process monitoring and fault diagnosis method based on feature extract in Fisher subspace is proposed. The feature vector and the feature direction are extracted by projecting the high-dimension process data onto the low-dimension Fisher space. The similarity of feature vector between the current and the reference batch is calculated for on-line process monitoring and the contribution plot of weights in feature direction is calculated for fault diagnosis. The approach overcomes the need for estimating or filling in the unknown portion of the process variables trajectories from the current time to the end of the batch. Simulation results on the benchmark model of penicillin fermentation process can demonstrate that in comparison to the MPCA method, the proposed method is more accurate and efficient for process monitoring and fault diagnosis.</description><identifier>ISSN: 1004-9541</identifier><identifier>EISSN: 2210-321X</identifier><identifier>DOI: 10.1016/S1004-9541(07)60008-1</identifier><language>eng</language><subject>analysis ; batch ; diagnosis ; discriminant ; extract ; fault ; feature ; fermentatio ; Fisher ; monitoring ; penicillin</subject><ispartof>Chinese journal of chemical engineering, 2006-12, Vol.14 (6X), p.759-764</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c250t-4600b3f46226a0a77b398e417df60e015711750c331d149b93d6abfb42aee4a23</citedby><cites>FETCH-LOGICAL-c250t-4600b3f46226a0a77b398e417df60e015711750c331d149b93d6abfb42aee4a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84275X/84275X.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>赵旭 阎威武 邵惠鹤</creatorcontrib><title>Monitoring and Fault Diagnosis for Batch Process Based on Feature Extract in Fisher Subspace</title><title>Chinese journal of chemical engineering</title><addtitle>Chinese Journal of Chemical Engineering</addtitle><description>Multivariate statistical process control methods have been widely used in biochemical industries. Batch process is usually monitored by the method of multi-way principal component analysis (MPCA). In this article, a new batch process monitoring and fault diagnosis method based on feature extract in Fisher subspace is proposed. The feature vector and the feature direction are extracted by projecting the high-dimension process data onto the low-dimension Fisher space. The similarity of feature vector between the current and the reference batch is calculated for on-line process monitoring and the contribution plot of weights in feature direction is calculated for fault diagnosis. The approach overcomes the need for estimating or filling in the unknown portion of the process variables trajectories from the current time to the end of the batch. Simulation results on the benchmark model of penicillin fermentation process can demonstrate that in comparison to the MPCA method, the proposed method is more accurate and efficient for process monitoring and fault diagnosis.</description><subject>analysis</subject><subject>batch</subject><subject>diagnosis</subject><subject>discriminant</subject><subject>extract</subject><subject>fault</subject><subject>feature</subject><subject>fermentatio</subject><subject>Fisher</subject><subject>monitoring</subject><subject>penicillin</subject><issn>1004-9541</issn><issn>2210-321X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAQx4MoOKcfQciTKFK9S9qkfdS5qTBRmIIPQkjTdKt0zZa0oN_ezo1xD8cdv_9x_Ag5R7hBQHE7Q4A4ypIYL0FeCQBIIzwgA8YQIs7w85AM9sgxOQnhG4BBiumAfL24pmqdr5o51U1BJ7qrW_pQ6XnjQhVo6Ty9161Z0DfvjA2hn4ItqGvoxOq285aOf1qvTUurflWFhfV01uVhpY09JUelroM92_Uh-ZiM30dP0fT18Xl0N40MS6CN4v7lnJexYExo0FLmPEttjLIoBVjARCLKBAznWGCc5RkvhM7LPGba2lgzPiQX27sr79adDa1aVsHYutaNdV1QLOOZEAg9mGxB410I3pZq5aul9r8KQW1cqn-XaiNKgVT_LhX2uetdbuGa-bqXtQ-KDCSTKCQDEH2B5H_h43Ow</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>赵旭 阎威武 邵惠鹤</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20061201</creationdate><title>Monitoring and Fault Diagnosis for Batch Process Based on Feature Extract in Fisher Subspace</title><author>赵旭 阎威武 邵惠鹤</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-4600b3f46226a0a77b398e417df60e015711750c331d149b93d6abfb42aee4a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>analysis</topic><topic>batch</topic><topic>diagnosis</topic><topic>discriminant</topic><topic>extract</topic><topic>fault</topic><topic>feature</topic><topic>fermentatio</topic><topic>Fisher</topic><topic>monitoring</topic><topic>penicillin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>赵旭 阎威武 邵惠鹤</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>赵旭 阎威武 邵惠鹤</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring and Fault Diagnosis for Batch Process Based on Feature Extract in Fisher Subspace</atitle><jtitle>Chinese journal of chemical engineering</jtitle><addtitle>Chinese Journal of Chemical Engineering</addtitle><date>2006-12-01</date><risdate>2006</risdate><volume>14</volume><issue>6X</issue><spage>759</spage><epage>764</epage><pages>759-764</pages><issn>1004-9541</issn><eissn>2210-321X</eissn><abstract>Multivariate statistical process control methods have been widely used in biochemical industries. Batch process is usually monitored by the method of multi-way principal component analysis (MPCA). In this article, a new batch process monitoring and fault diagnosis method based on feature extract in Fisher subspace is proposed. The feature vector and the feature direction are extracted by projecting the high-dimension process data onto the low-dimension Fisher space. The similarity of feature vector between the current and the reference batch is calculated for on-line process monitoring and the contribution plot of weights in feature direction is calculated for fault diagnosis. The approach overcomes the need for estimating or filling in the unknown portion of the process variables trajectories from the current time to the end of the batch. Simulation results on the benchmark model of penicillin fermentation process can demonstrate that in comparison to the MPCA method, the proposed method is more accurate and efficient for process monitoring and fault diagnosis.</abstract><doi>10.1016/S1004-9541(07)60008-1</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1004-9541 |
ispartof | Chinese journal of chemical engineering, 2006-12, Vol.14 (6X), p.759-764 |
issn | 1004-9541 2210-321X |
language | eng |
recordid | cdi_proquest_miscellaneous_29396610 |
source | Elsevier ScienceDirect Journals; Alma/SFX Local Collection |
subjects | analysis batch diagnosis discriminant extract fault feature fermentatio Fisher monitoring penicillin |
title | Monitoring and Fault Diagnosis for Batch Process Based on Feature Extract in Fisher Subspace |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20and%20Fault%20Diagnosis%20for%20Batch%20Process%20Based%20on%20Feature%20Extract%20in%20Fisher%20Subspace&rft.jtitle=Chinese%20journal%20of%20chemical%20engineering&rft.au=%E8%B5%B5%E6%97%AD%20%E9%98%8E%E5%A8%81%E6%AD%A6%20%E9%82%B5%E6%83%A0%E9%B9%A4&rft.date=2006-12-01&rft.volume=14&rft.issue=6X&rft.spage=759&rft.epage=764&rft.pages=759-764&rft.issn=1004-9541&rft.eissn=2210-321X&rft_id=info:doi/10.1016/S1004-9541(07)60008-1&rft_dat=%3Cproquest_cross%3E29396610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29396610&rft_id=info:pmid/&rft_cqvip_id=690727167200606007&rfr_iscdi=true |