A more accurate algorithm for computing the Christoffel transformation

A monic Jacobi matrix is a tridiagonal matrix which contains the parameters of the three-term recurrence relation satisfied by the sequence of monic polynomials orthogonal with respect to a measure. The basic Christoffel transformation with shift α transforms the monic Jacobi matrix associated with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2007-08, Vol.205 (1), p.567-582
Hauptverfasser: Bueno, María I., Dopico, Froilán M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 582
container_issue 1
container_start_page 567
container_title Journal of computational and applied mathematics
container_volume 205
creator Bueno, María I.
Dopico, Froilán M.
description A monic Jacobi matrix is a tridiagonal matrix which contains the parameters of the three-term recurrence relation satisfied by the sequence of monic polynomials orthogonal with respect to a measure. The basic Christoffel transformation with shift α transforms the monic Jacobi matrix associated with a measure d μ into the monic Jacobi matrix associated with ( x - α ) d μ . This transformation is known for its numerous applications to quantum mechanics, integrable systems, and other areas of mathematics and mathematical physics. From a numerical point of view, the Christoffel transformation is essentially computed by performing one step of the LR algorithm with shift, but this algorithm is not stable. We propose a more accurate algorithm, estimate its forward errors, and prove that it is forward stable, i.e., that the obtained forward errors are of similar magnitude to those produced by a backward stable algorithm. This means that the magnitude of the errors is the best one can expect, because it reflects the sensitivity of the problem to perturbations in the input data.
doi_str_mv 10.1016/j.cam.2006.05.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29392642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042706003396</els_id><sourcerecordid>29392642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-d59d2db67defe2291485758c8d05db6695938c349788e5601d12ce98da84124e3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKs_wNte9LZrks1uEjyVYlUoeNFziMlsm7K7qUlW8N-b0oI3TzMM35uZ9xC6JbgimLQPu8rooaIYtxVuKkz5GZoRwWVJOBfnaIZrzkvMKL9EVzHucAYlYTO0WhSDD1BoY6agU276jQ8ubYei86EwfthPyY2bIm2hWG6Di8l3HfRFCnqMGRl0cn68Rhed7iPcnOocfaye3pcv5frt-XW5WJeGtTyVtpGW2s-WW-iA0vyBaHgjjLC4yeNWNrIWpmaSCwFNi4kl1IAUVgtGKIN6ju6Pe_fBf00QkxpcNND3egQ_RUVlLWnLaAbJETTBxxigU_vgBh1-FMHqkJjaqZyYOiSmcKNyYllzd1quo9F9lx0aF_-EgjOBa5G5xyMH2em3g6CicTAasC6AScp698-VX75vgGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29392642</pqid></control><display><type>article</type><title>A more accurate algorithm for computing the Christoffel transformation</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bueno, María I. ; Dopico, Froilán M.</creator><creatorcontrib>Bueno, María I. ; Dopico, Froilán M.</creatorcontrib><description>A monic Jacobi matrix is a tridiagonal matrix which contains the parameters of the three-term recurrence relation satisfied by the sequence of monic polynomials orthogonal with respect to a measure. The basic Christoffel transformation with shift α transforms the monic Jacobi matrix associated with a measure d μ into the monic Jacobi matrix associated with ( x - α ) d μ . This transformation is known for its numerous applications to quantum mechanics, integrable systems, and other areas of mathematics and mathematical physics. From a numerical point of view, the Christoffel transformation is essentially computed by performing one step of the LR algorithm with shift, but this algorithm is not stable. We propose a more accurate algorithm, estimate its forward errors, and prove that it is forward stable, i.e., that the obtained forward errors are of similar magnitude to those produced by a backward stable algorithm. This means that the magnitude of the errors is the best one can expect, because it reflects the sensitivity of the problem to perturbations in the input data.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2006.05.027</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Christoffel transformation ; Difference and functional equations, recurrence relations ; Exact sciences and technology ; Forward stability ; Fourier analysis ; LR algorithm ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Operator theory ; Roundoff error analysis ; Sciences and techniques of general use ; Special functions</subject><ispartof>Journal of computational and applied mathematics, 2007-08, Vol.205 (1), p.567-582</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-d59d2db67defe2291485758c8d05db6695938c349788e5601d12ce98da84124e3</citedby><cites>FETCH-LOGICAL-c467t-d59d2db67defe2291485758c8d05db6695938c349788e5601d12ce98da84124e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cam.2006.05.027$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18748038$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bueno, María I.</creatorcontrib><creatorcontrib>Dopico, Froilán M.</creatorcontrib><title>A more accurate algorithm for computing the Christoffel transformation</title><title>Journal of computational and applied mathematics</title><description>A monic Jacobi matrix is a tridiagonal matrix which contains the parameters of the three-term recurrence relation satisfied by the sequence of monic polynomials orthogonal with respect to a measure. The basic Christoffel transformation with shift α transforms the monic Jacobi matrix associated with a measure d μ into the monic Jacobi matrix associated with ( x - α ) d μ . This transformation is known for its numerous applications to quantum mechanics, integrable systems, and other areas of mathematics and mathematical physics. From a numerical point of view, the Christoffel transformation is essentially computed by performing one step of the LR algorithm with shift, but this algorithm is not stable. We propose a more accurate algorithm, estimate its forward errors, and prove that it is forward stable, i.e., that the obtained forward errors are of similar magnitude to those produced by a backward stable algorithm. This means that the magnitude of the errors is the best one can expect, because it reflects the sensitivity of the problem to perturbations in the input data.</description><subject>Christoffel transformation</subject><subject>Difference and functional equations, recurrence relations</subject><subject>Exact sciences and technology</subject><subject>Forward stability</subject><subject>Fourier analysis</subject><subject>LR algorithm</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Operator theory</subject><subject>Roundoff error analysis</subject><subject>Sciences and techniques of general use</subject><subject>Special functions</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKs_wNte9LZrks1uEjyVYlUoeNFziMlsm7K7qUlW8N-b0oI3TzMM35uZ9xC6JbgimLQPu8rooaIYtxVuKkz5GZoRwWVJOBfnaIZrzkvMKL9EVzHucAYlYTO0WhSDD1BoY6agU276jQ8ubYei86EwfthPyY2bIm2hWG6Di8l3HfRFCnqMGRl0cn68Rhed7iPcnOocfaye3pcv5frt-XW5WJeGtTyVtpGW2s-WW-iA0vyBaHgjjLC4yeNWNrIWpmaSCwFNi4kl1IAUVgtGKIN6ju6Pe_fBf00QkxpcNND3egQ_RUVlLWnLaAbJETTBxxigU_vgBh1-FMHqkJjaqZyYOiSmcKNyYllzd1quo9F9lx0aF_-EgjOBa5G5xyMH2em3g6CicTAasC6AScp698-VX75vgGc</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Bueno, María I.</creator><creator>Dopico, Froilán M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070801</creationdate><title>A more accurate algorithm for computing the Christoffel transformation</title><author>Bueno, María I. ; Dopico, Froilán M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-d59d2db67defe2291485758c8d05db6695938c349788e5601d12ce98da84124e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Christoffel transformation</topic><topic>Difference and functional equations, recurrence relations</topic><topic>Exact sciences and technology</topic><topic>Forward stability</topic><topic>Fourier analysis</topic><topic>LR algorithm</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Operator theory</topic><topic>Roundoff error analysis</topic><topic>Sciences and techniques of general use</topic><topic>Special functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bueno, María I.</creatorcontrib><creatorcontrib>Dopico, Froilán M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bueno, María I.</au><au>Dopico, Froilán M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A more accurate algorithm for computing the Christoffel transformation</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>205</volume><issue>1</issue><spage>567</spage><epage>582</epage><pages>567-582</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>A monic Jacobi matrix is a tridiagonal matrix which contains the parameters of the three-term recurrence relation satisfied by the sequence of monic polynomials orthogonal with respect to a measure. The basic Christoffel transformation with shift α transforms the monic Jacobi matrix associated with a measure d μ into the monic Jacobi matrix associated with ( x - α ) d μ . This transformation is known for its numerous applications to quantum mechanics, integrable systems, and other areas of mathematics and mathematical physics. From a numerical point of view, the Christoffel transformation is essentially computed by performing one step of the LR algorithm with shift, but this algorithm is not stable. We propose a more accurate algorithm, estimate its forward errors, and prove that it is forward stable, i.e., that the obtained forward errors are of similar magnitude to those produced by a backward stable algorithm. This means that the magnitude of the errors is the best one can expect, because it reflects the sensitivity of the problem to perturbations in the input data.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2006.05.027</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2007-08, Vol.205 (1), p.567-582
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_29392642
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Christoffel transformation
Difference and functional equations, recurrence relations
Exact sciences and technology
Forward stability
Fourier analysis
LR algorithm
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Operator theory
Roundoff error analysis
Sciences and techniques of general use
Special functions
title A more accurate algorithm for computing the Christoffel transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A29%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20more%20accurate%20algorithm%20for%20computing%20the%20Christoffel%20transformation&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Bueno,%20Mar%C3%ADa%20I.&rft.date=2007-08-01&rft.volume=205&rft.issue=1&rft.spage=567&rft.epage=582&rft.pages=567-582&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2006.05.027&rft_dat=%3Cproquest_cross%3E29392642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29392642&rft_id=info:pmid/&rft_els_id=S0377042706003396&rfr_iscdi=true