Multivariate feed back control: an application in a productive process

The main purpose of this research is to implement a multivariate feedback adjustment proportional to the last deviation from the target, in the set of variables wandering around the target. To apply the controller equation it will be necessary to study the exponentially weighted moving average ( EWM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & industrial engineering 2004-07, Vol.46 (4), p.837-850
Hauptverfasser: Mendonça Souza, Adriano, Wayne Samohyl, Robert, Malavé, César O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 850
container_issue 4
container_start_page 837
container_title Computers & industrial engineering
container_volume 46
creator Mendonça Souza, Adriano
Wayne Samohyl, Robert
Malavé, César O
description The main purpose of this research is to implement a multivariate feedback adjustment proportional to the last deviation from the target, in the set of variables wandering around the target. To apply the controller equation it will be necessary to study the exponentially weighted moving average ( EWMA) statistic, in order to determine the behavior of the target disturbances. To determine the forecast values of the variables we will use Seemingly Unrelated Regression ( SUR), which is necessary since there is a relationship between the variables and between the errors. In this manner, multivariate feedback adjustment can be reached based on scientific grounds.
doi_str_mv 10.1016/j.cie.2004.05.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29386611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360835204000774</els_id><sourcerecordid>29386611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-8dd27f521099638fe792be733e7bf833163784c39659eff02a68c0039cf285ea3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEuXyAGwRA1vCsV3HNkyoooBUxAKz5TrHkkOaFDupxNvjqkwMTD6Wvu9cfkKuKFQUaH3bVi5gxQDmFYgKKD8iM6qkLkEIOCYz4DWUigt2Ss5SaiGDQtMZWb5O3Rh2NgY7YuERm2Jt3Wfhhn6MQ3dX2L6w220XnB3D0Bchf4ttHJrJZQ33pcOULsiJt13Cy9_3nHwsH98Xz-Xq7ell8bAqHRd8LFXTMOkFo6B1zZVHqdkaJeco115xTmsu1dxxXQuN3gOztXIAXDvPlEDLz8nNoW-e-zVhGs0mJIddZ3scpmSY5qquKc3g9R-wHabY590Mo1zOpZR7iB4gF4eUInqzjWFj47ehYPaxmtbkWM0-VgPC5Fizc39wMJ-5CxhNykjvsAkR3WiaIfxj_wBhnX55</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213747771</pqid></control><display><type>article</type><title>Multivariate feed back control: an application in a productive process</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mendonça Souza, Adriano ; Wayne Samohyl, Robert ; Malavé, César O</creator><creatorcontrib>Mendonça Souza, Adriano ; Wayne Samohyl, Robert ; Malavé, César O</creatorcontrib><description>The main purpose of this research is to implement a multivariate feedback adjustment proportional to the last deviation from the target, in the set of variables wandering around the target. To apply the controller equation it will be necessary to study the exponentially weighted moving average ( EWMA) statistic, in order to determine the behavior of the target disturbances. To determine the forecast values of the variables we will use Seemingly Unrelated Regression ( SUR), which is necessary since there is a relationship between the variables and between the errors. In this manner, multivariate feedback adjustment can be reached based on scientific grounds.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/j.cie.2004.05.013</identifier><identifier>CODEN: CINDDL</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Engineering process control ; Monitoring ; Multivariate analysis ; Multivariate feedback control ; Process planning ; Proportional feedback ; Regression analysis ; Seemingly unrelated regression ; Statistical process control ; Studies</subject><ispartof>Computers &amp; industrial engineering, 2004-07, Vol.46 (4), p.837-850</ispartof><rights>2004 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Jul 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-8dd27f521099638fe792be733e7bf833163784c39659eff02a68c0039cf285ea3</citedby><cites>FETCH-LOGICAL-c353t-8dd27f521099638fe792be733e7bf833163784c39659eff02a68c0039cf285ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cie.2004.05.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Mendonça Souza, Adriano</creatorcontrib><creatorcontrib>Wayne Samohyl, Robert</creatorcontrib><creatorcontrib>Malavé, César O</creatorcontrib><title>Multivariate feed back control: an application in a productive process</title><title>Computers &amp; industrial engineering</title><description>The main purpose of this research is to implement a multivariate feedback adjustment proportional to the last deviation from the target, in the set of variables wandering around the target. To apply the controller equation it will be necessary to study the exponentially weighted moving average ( EWMA) statistic, in order to determine the behavior of the target disturbances. To determine the forecast values of the variables we will use Seemingly Unrelated Regression ( SUR), which is necessary since there is a relationship between the variables and between the errors. In this manner, multivariate feedback adjustment can be reached based on scientific grounds.</description><subject>Engineering process control</subject><subject>Monitoring</subject><subject>Multivariate analysis</subject><subject>Multivariate feedback control</subject><subject>Process planning</subject><subject>Proportional feedback</subject><subject>Regression analysis</subject><subject>Seemingly unrelated regression</subject><subject>Statistical process control</subject><subject>Studies</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEuXyAGwRA1vCsV3HNkyoooBUxAKz5TrHkkOaFDupxNvjqkwMTD6Wvu9cfkKuKFQUaH3bVi5gxQDmFYgKKD8iM6qkLkEIOCYz4DWUigt2Ss5SaiGDQtMZWb5O3Rh2NgY7YuERm2Jt3Wfhhn6MQ3dX2L6w220XnB3D0Bchf4ttHJrJZQ33pcOULsiJt13Cy9_3nHwsH98Xz-Xq7ell8bAqHRd8LFXTMOkFo6B1zZVHqdkaJeco115xTmsu1dxxXQuN3gOztXIAXDvPlEDLz8nNoW-e-zVhGs0mJIddZ3scpmSY5qquKc3g9R-wHabY590Mo1zOpZR7iB4gF4eUInqzjWFj47ehYPaxmtbkWM0-VgPC5Fizc39wMJ-5CxhNykjvsAkR3WiaIfxj_wBhnX55</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Mendonça Souza, Adriano</creator><creator>Wayne Samohyl, Robert</creator><creator>Malavé, César O</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040701</creationdate><title>Multivariate feed back control: an application in a productive process</title><author>Mendonça Souza, Adriano ; Wayne Samohyl, Robert ; Malavé, César O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-8dd27f521099638fe792be733e7bf833163784c39659eff02a68c0039cf285ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Engineering process control</topic><topic>Monitoring</topic><topic>Multivariate analysis</topic><topic>Multivariate feedback control</topic><topic>Process planning</topic><topic>Proportional feedback</topic><topic>Regression analysis</topic><topic>Seemingly unrelated regression</topic><topic>Statistical process control</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendonça Souza, Adriano</creatorcontrib><creatorcontrib>Wayne Samohyl, Robert</creatorcontrib><creatorcontrib>Malavé, César O</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendonça Souza, Adriano</au><au>Wayne Samohyl, Robert</au><au>Malavé, César O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate feed back control: an application in a productive process</atitle><jtitle>Computers &amp; industrial engineering</jtitle><date>2004-07-01</date><risdate>2004</risdate><volume>46</volume><issue>4</issue><spage>837</spage><epage>850</epage><pages>837-850</pages><issn>0360-8352</issn><eissn>1879-0550</eissn><coden>CINDDL</coden><abstract>The main purpose of this research is to implement a multivariate feedback adjustment proportional to the last deviation from the target, in the set of variables wandering around the target. To apply the controller equation it will be necessary to study the exponentially weighted moving average ( EWMA) statistic, in order to determine the behavior of the target disturbances. To determine the forecast values of the variables we will use Seemingly Unrelated Regression ( SUR), which is necessary since there is a relationship between the variables and between the errors. In this manner, multivariate feedback adjustment can be reached based on scientific grounds.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cie.2004.05.013</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-8352
ispartof Computers & industrial engineering, 2004-07, Vol.46 (4), p.837-850
issn 0360-8352
1879-0550
language eng
recordid cdi_proquest_miscellaneous_29386611
source Elsevier ScienceDirect Journals Complete
subjects Engineering process control
Monitoring
Multivariate analysis
Multivariate feedback control
Process planning
Proportional feedback
Regression analysis
Seemingly unrelated regression
Statistical process control
Studies
title Multivariate feed back control: an application in a productive process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20feed%20back%20control:%20an%20application%20in%20a%20productive%20process&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Mendon%C3%A7a%20Souza,%20Adriano&rft.date=2004-07-01&rft.volume=46&rft.issue=4&rft.spage=837&rft.epage=850&rft.pages=837-850&rft.issn=0360-8352&rft.eissn=1879-0550&rft.coden=CINDDL&rft_id=info:doi/10.1016/j.cie.2004.05.013&rft_dat=%3Cproquest_cross%3E29386611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213747771&rft_id=info:pmid/&rft_els_id=S0360835204000774&rfr_iscdi=true