Understanding the molecular mechanism responsible for developing therapeutic radiation-induced radioresistance of rectal cancer and improving the clinical outcomes of radiotherapy - A review

Rectal cancer accounts for the second highest cancer-related mortality, which is predominant in Western civilizations. The treatment for rectal cancers includes surgery, radiotherapy, chemotherapy, and immunotherapy. Radiotherapy, specifically external beam radiation therapy, is the most common way...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer biology & therapy 2024-12, Vol.25 (1), p.2317999-2317999
Hauptverfasser: Jain, Samatha M, Nagainallur Ravichandran, Shruthi, Murali Kumar, Makalakshmi, Banerjee, Antara, Sun-Zhang, Alexander, Zhang, Hong, Pathak, Rupak, Sun, Xiao-Feng, Pathak, Surajit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2317999
container_issue 1
container_start_page 2317999
container_title Cancer biology & therapy
container_volume 25
creator Jain, Samatha M
Nagainallur Ravichandran, Shruthi
Murali Kumar, Makalakshmi
Banerjee, Antara
Sun-Zhang, Alexander
Zhang, Hong
Pathak, Rupak
Sun, Xiao-Feng
Pathak, Surajit
description Rectal cancer accounts for the second highest cancer-related mortality, which is predominant in Western civilizations. The treatment for rectal cancers includes surgery, radiotherapy, chemotherapy, and immunotherapy. Radiotherapy, specifically external beam radiation therapy, is the most common way to treat rectal cancer because radiation not only limits cancer progression but also significantly reduces the risk of local recurrence. However, therapeutic radiation-induced radioresistance to rectal cancer cells and toxicity to normal tissues are major drawbacks. Therefore, understanding the mechanistic basis of developing radioresistance during and after radiation therapy would provide crucial insight to improve clinical outcomes of radiation therapy for rectal cancer patients. Studies by various groups have shown that radiotherapy-mediated changes in the tumor microenvironment play a crucial role in developing radioresistance. Therapeutic radiation-induced hypoxia and functional alterations in the stromal cells, specifically tumor-associated macrophage (TAM) and cancer-associated fibroblasts (CAF), play a crucial role in developing radioresistance. In addition, signaling pathways, such as - the PI3K/AKT pathway, Wnt/β-catenin signaling, and the hippo pathway, modulate the radiation responsiveness of cancer cells. Different radiosensitizers, such as small molecules, microRNA, nanomaterials, and natural and chemical sensitizers, are being used to increase the effectiveness of radiotherapy. This review highlights the mechanism responsible for developing radioresistance of rectal cancer following radiotherapy and potential strategies to enhance the effectiveness of radiotherapy for better management of rectal cancer.
doi_str_mv 10.1080/15384047.2024.2317999
format Article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2938289410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f09ecb6416a149119986c17188c7dded</doaj_id><sourcerecordid>2938289410</sourcerecordid><originalsourceid>FETCH-LOGICAL-c597t-69d118e094df35da4872bb43a6dba9e3d1810dd0311bbaa9a7835ec5fe8195ef3</originalsourceid><addsrcrecordid>eNqNkstu1DAYhSMEoqXwCCAv2aT4Eif2CkYtl0qV2FC2lmP_mXFx4sFOppqX49lw5lIxm4qV7d_fOceyTlG8JfiSYIE_EM5EhavmkmJaXVJGGinls-KccM5LwZv6-bxnopyhs-JVSvcY04bW8mVxlqUVrxk9L_7cDRZiGvVg3bBE4wpQHzyYyeuIejArPbjUowhpHYbkWg-oCxFZ2IAP64Mk6jVMozMoauv06MJQusFOBuxuErLazREGUOiylxm1R2Y-R5SDkevXMWyO-ca7wZlMhGk0oYe0E80--6gtKtEiu2wcPLwuXnTaJ3hzWC-Kuy-ff1x9K2-_f725WtyWhstmLGtpCRGAZWU7xq2uREPbtmK6tq2WwCwRBFuLGSFtq7XUjWAcDO9AEMmhYxfFzd7XBn2v1tH1Om5V0E7tBiEulY75BzyoDkswbV2RWpNKEiKlqA1piBCmsRZs9ir3XukB1lN74nYY_co7UIJjyvmT_LX7udilhzgpQijF9f_x3k2KYlLXJPMf93yGe7AGhjFqfyI7vRncSi3DRhEsWTaQ2eH9wSGG3xOkUfUuGfBeDxCmpKhkggpZEZxRvkdNDClF6B5zCFZzsdWx2GoutjoUO-ve_fvIR9WxyRn4tAfckAva64cQvVWj3voQu5i75pJiT2f8BbeGD6s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938289410</pqid></control><display><type>article</type><title>Understanding the molecular mechanism responsible for developing therapeutic radiation-induced radioresistance of rectal cancer and improving the clinical outcomes of radiotherapy - A review</title><source>Taylor &amp; Francis Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>SWEPUB Freely available online</source><creator>Jain, Samatha M ; Nagainallur Ravichandran, Shruthi ; Murali Kumar, Makalakshmi ; Banerjee, Antara ; Sun-Zhang, Alexander ; Zhang, Hong ; Pathak, Rupak ; Sun, Xiao-Feng ; Pathak, Surajit</creator><creatorcontrib>Jain, Samatha M ; Nagainallur Ravichandran, Shruthi ; Murali Kumar, Makalakshmi ; Banerjee, Antara ; Sun-Zhang, Alexander ; Zhang, Hong ; Pathak, Rupak ; Sun, Xiao-Feng ; Pathak, Surajit</creatorcontrib><description>Rectal cancer accounts for the second highest cancer-related mortality, which is predominant in Western civilizations. The treatment for rectal cancers includes surgery, radiotherapy, chemotherapy, and immunotherapy. Radiotherapy, specifically external beam radiation therapy, is the most common way to treat rectal cancer because radiation not only limits cancer progression but also significantly reduces the risk of local recurrence. However, therapeutic radiation-induced radioresistance to rectal cancer cells and toxicity to normal tissues are major drawbacks. Therefore, understanding the mechanistic basis of developing radioresistance during and after radiation therapy would provide crucial insight to improve clinical outcomes of radiation therapy for rectal cancer patients. Studies by various groups have shown that radiotherapy-mediated changes in the tumor microenvironment play a crucial role in developing radioresistance. Therapeutic radiation-induced hypoxia and functional alterations in the stromal cells, specifically tumor-associated macrophage (TAM) and cancer-associated fibroblasts (CAF), play a crucial role in developing radioresistance. In addition, signaling pathways, such as - the PI3K/AKT pathway, Wnt/β-catenin signaling, and the hippo pathway, modulate the radiation responsiveness of cancer cells. Different radiosensitizers, such as small molecules, microRNA, nanomaterials, and natural and chemical sensitizers, are being used to increase the effectiveness of radiotherapy. This review highlights the mechanism responsible for developing radioresistance of rectal cancer following radiotherapy and potential strategies to enhance the effectiveness of radiotherapy for better management of rectal cancer.</description><identifier>ISSN: 1538-4047</identifier><identifier>ISSN: 1555-8576</identifier><identifier>EISSN: 1555-8576</identifier><identifier>DOI: 10.1080/15384047.2024.2317999</identifier><identifier>PMID: 38445632</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Cancer-Associated Fibroblasts ; DNA double-strand breaks ; Humans ; Immunotherapy ; MicroRNAs ; Neoplasms, Second Primary ; Phosphatidylinositol 3-Kinases ; radiosensitizers ; radiotherapy ; Rectal cancer ; Rectal Neoplasms - radiotherapy ; Review ; Tumor Microenvironment</subject><ispartof>Cancer biology &amp; therapy, 2024-12, Vol.25 (1), p.2317999-2317999</ispartof><rights>2024 The Author(s). Published with license by Taylor &amp; Francis Group, LLC. 2024</rights><rights>2024 The Author(s). Published with license by Taylor &amp; Francis Group, LLC. 2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c597t-69d118e094df35da4872bb43a6dba9e3d1810dd0311bbaa9a7835ec5fe8195ef3</cites><orcidid>0000-0002-7306-1272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936619/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936619/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,550,723,776,780,860,881,2096,27479,27901,27902,53766,53768,59116,59117</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38445632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-201661$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-112206$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:155090554$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Jain, Samatha M</creatorcontrib><creatorcontrib>Nagainallur Ravichandran, Shruthi</creatorcontrib><creatorcontrib>Murali Kumar, Makalakshmi</creatorcontrib><creatorcontrib>Banerjee, Antara</creatorcontrib><creatorcontrib>Sun-Zhang, Alexander</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Pathak, Rupak</creatorcontrib><creatorcontrib>Sun, Xiao-Feng</creatorcontrib><creatorcontrib>Pathak, Surajit</creatorcontrib><title>Understanding the molecular mechanism responsible for developing therapeutic radiation-induced radioresistance of rectal cancer and improving the clinical outcomes of radiotherapy - A review</title><title>Cancer biology &amp; therapy</title><addtitle>Cancer Biol Ther</addtitle><description>Rectal cancer accounts for the second highest cancer-related mortality, which is predominant in Western civilizations. The treatment for rectal cancers includes surgery, radiotherapy, chemotherapy, and immunotherapy. Radiotherapy, specifically external beam radiation therapy, is the most common way to treat rectal cancer because radiation not only limits cancer progression but also significantly reduces the risk of local recurrence. However, therapeutic radiation-induced radioresistance to rectal cancer cells and toxicity to normal tissues are major drawbacks. Therefore, understanding the mechanistic basis of developing radioresistance during and after radiation therapy would provide crucial insight to improve clinical outcomes of radiation therapy for rectal cancer patients. Studies by various groups have shown that radiotherapy-mediated changes in the tumor microenvironment play a crucial role in developing radioresistance. Therapeutic radiation-induced hypoxia and functional alterations in the stromal cells, specifically tumor-associated macrophage (TAM) and cancer-associated fibroblasts (CAF), play a crucial role in developing radioresistance. In addition, signaling pathways, such as - the PI3K/AKT pathway, Wnt/β-catenin signaling, and the hippo pathway, modulate the radiation responsiveness of cancer cells. Different radiosensitizers, such as small molecules, microRNA, nanomaterials, and natural and chemical sensitizers, are being used to increase the effectiveness of radiotherapy. This review highlights the mechanism responsible for developing radioresistance of rectal cancer following radiotherapy and potential strategies to enhance the effectiveness of radiotherapy for better management of rectal cancer.</description><subject>Cancer-Associated Fibroblasts</subject><subject>DNA double-strand breaks</subject><subject>Humans</subject><subject>Immunotherapy</subject><subject>MicroRNAs</subject><subject>Neoplasms, Second Primary</subject><subject>Phosphatidylinositol 3-Kinases</subject><subject>radiosensitizers</subject><subject>radiotherapy</subject><subject>Rectal cancer</subject><subject>Rectal Neoplasms - radiotherapy</subject><subject>Review</subject><subject>Tumor Microenvironment</subject><issn>1538-4047</issn><issn>1555-8576</issn><issn>1555-8576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNkstu1DAYhSMEoqXwCCAv2aT4Eif2CkYtl0qV2FC2lmP_mXFx4sFOppqX49lw5lIxm4qV7d_fOceyTlG8JfiSYIE_EM5EhavmkmJaXVJGGinls-KccM5LwZv6-bxnopyhs-JVSvcY04bW8mVxlqUVrxk9L_7cDRZiGvVg3bBE4wpQHzyYyeuIejArPbjUowhpHYbkWg-oCxFZ2IAP64Mk6jVMozMoauv06MJQusFOBuxuErLazREGUOiylxm1R2Y-R5SDkevXMWyO-ca7wZlMhGk0oYe0E80--6gtKtEiu2wcPLwuXnTaJ3hzWC-Kuy-ff1x9K2-_f725WtyWhstmLGtpCRGAZWU7xq2uREPbtmK6tq2WwCwRBFuLGSFtq7XUjWAcDO9AEMmhYxfFzd7XBn2v1tH1Om5V0E7tBiEulY75BzyoDkswbV2RWpNKEiKlqA1piBCmsRZs9ir3XukB1lN74nYY_co7UIJjyvmT_LX7udilhzgpQijF9f_x3k2KYlLXJPMf93yGe7AGhjFqfyI7vRncSi3DRhEsWTaQ2eH9wSGG3xOkUfUuGfBeDxCmpKhkggpZEZxRvkdNDClF6B5zCFZzsdWx2GoutjoUO-ve_fvIR9WxyRn4tAfckAva64cQvVWj3voQu5i75pJiT2f8BbeGD6s</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Jain, Samatha M</creator><creator>Nagainallur Ravichandran, Shruthi</creator><creator>Murali Kumar, Makalakshmi</creator><creator>Banerjee, Antara</creator><creator>Sun-Zhang, Alexander</creator><creator>Zhang, Hong</creator><creator>Pathak, Rupak</creator><creator>Sun, Xiao-Feng</creator><creator>Pathak, Surajit</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ABXSW</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG8</scope><scope>ZZAVC</scope><scope>AABEP</scope><scope>D91</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7306-1272</orcidid></search><sort><creationdate>20241231</creationdate><title>Understanding the molecular mechanism responsible for developing therapeutic radiation-induced radioresistance of rectal cancer and improving the clinical outcomes of radiotherapy - A review</title><author>Jain, Samatha M ; Nagainallur Ravichandran, Shruthi ; Murali Kumar, Makalakshmi ; Banerjee, Antara ; Sun-Zhang, Alexander ; Zhang, Hong ; Pathak, Rupak ; Sun, Xiao-Feng ; Pathak, Surajit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c597t-69d118e094df35da4872bb43a6dba9e3d1810dd0311bbaa9a7835ec5fe8195ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cancer-Associated Fibroblasts</topic><topic>DNA double-strand breaks</topic><topic>Humans</topic><topic>Immunotherapy</topic><topic>MicroRNAs</topic><topic>Neoplasms, Second Primary</topic><topic>Phosphatidylinositol 3-Kinases</topic><topic>radiosensitizers</topic><topic>radiotherapy</topic><topic>Rectal cancer</topic><topic>Rectal Neoplasms - radiotherapy</topic><topic>Review</topic><topic>Tumor Microenvironment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Samatha M</creatorcontrib><creatorcontrib>Nagainallur Ravichandran, Shruthi</creatorcontrib><creatorcontrib>Murali Kumar, Makalakshmi</creatorcontrib><creatorcontrib>Banerjee, Antara</creatorcontrib><creatorcontrib>Sun-Zhang, Alexander</creatorcontrib><creatorcontrib>Zhang, Hong</creatorcontrib><creatorcontrib>Pathak, Rupak</creatorcontrib><creatorcontrib>Sun, Xiao-Feng</creatorcontrib><creatorcontrib>Pathak, Surajit</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Linköpings universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Linköpings universitet</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Örebro universitet full text</collection><collection>SWEPUB Örebro universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cancer biology &amp; therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Samatha M</au><au>Nagainallur Ravichandran, Shruthi</au><au>Murali Kumar, Makalakshmi</au><au>Banerjee, Antara</au><au>Sun-Zhang, Alexander</au><au>Zhang, Hong</au><au>Pathak, Rupak</au><au>Sun, Xiao-Feng</au><au>Pathak, Surajit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the molecular mechanism responsible for developing therapeutic radiation-induced radioresistance of rectal cancer and improving the clinical outcomes of radiotherapy - A review</atitle><jtitle>Cancer biology &amp; therapy</jtitle><addtitle>Cancer Biol Ther</addtitle><date>2024-12-31</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>2317999</spage><epage>2317999</epage><pages>2317999-2317999</pages><issn>1538-4047</issn><issn>1555-8576</issn><eissn>1555-8576</eissn><abstract>Rectal cancer accounts for the second highest cancer-related mortality, which is predominant in Western civilizations. The treatment for rectal cancers includes surgery, radiotherapy, chemotherapy, and immunotherapy. Radiotherapy, specifically external beam radiation therapy, is the most common way to treat rectal cancer because radiation not only limits cancer progression but also significantly reduces the risk of local recurrence. However, therapeutic radiation-induced radioresistance to rectal cancer cells and toxicity to normal tissues are major drawbacks. Therefore, understanding the mechanistic basis of developing radioresistance during and after radiation therapy would provide crucial insight to improve clinical outcomes of radiation therapy for rectal cancer patients. Studies by various groups have shown that radiotherapy-mediated changes in the tumor microenvironment play a crucial role in developing radioresistance. Therapeutic radiation-induced hypoxia and functional alterations in the stromal cells, specifically tumor-associated macrophage (TAM) and cancer-associated fibroblasts (CAF), play a crucial role in developing radioresistance. In addition, signaling pathways, such as - the PI3K/AKT pathway, Wnt/β-catenin signaling, and the hippo pathway, modulate the radiation responsiveness of cancer cells. Different radiosensitizers, such as small molecules, microRNA, nanomaterials, and natural and chemical sensitizers, are being used to increase the effectiveness of radiotherapy. This review highlights the mechanism responsible for developing radioresistance of rectal cancer following radiotherapy and potential strategies to enhance the effectiveness of radiotherapy for better management of rectal cancer.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>38445632</pmid><doi>10.1080/15384047.2024.2317999</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7306-1272</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1538-4047
ispartof Cancer biology & therapy, 2024-12, Vol.25 (1), p.2317999-2317999
issn 1538-4047
1555-8576
1555-8576
language eng
recordid cdi_proquest_miscellaneous_2938289410
source Taylor & Francis Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; SWEPUB Freely available online
subjects Cancer-Associated Fibroblasts
DNA double-strand breaks
Humans
Immunotherapy
MicroRNAs
Neoplasms, Second Primary
Phosphatidylinositol 3-Kinases
radiosensitizers
radiotherapy
Rectal cancer
Rectal Neoplasms - radiotherapy
Review
Tumor Microenvironment
title Understanding the molecular mechanism responsible for developing therapeutic radiation-induced radioresistance of rectal cancer and improving the clinical outcomes of radiotherapy - A review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20molecular%20mechanism%20responsible%20for%20developing%20therapeutic%20radiation-induced%20radioresistance%20of%20rectal%20cancer%20and%20improving%20the%20clinical%20outcomes%20of%20radiotherapy%20-%20A%20review&rft.jtitle=Cancer%20biology%20&%20therapy&rft.au=Jain,%20Samatha%20M&rft.date=2024-12-31&rft.volume=25&rft.issue=1&rft.spage=2317999&rft.epage=2317999&rft.pages=2317999-2317999&rft.issn=1538-4047&rft.eissn=1555-8576&rft_id=info:doi/10.1080/15384047.2024.2317999&rft_dat=%3Cproquest_swepu%3E2938289410%3C/proquest_swepu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2938289410&rft_id=info:pmid/38445632&rft_doaj_id=oai_doaj_org_article_f09ecb6416a149119986c17188c7dded&rfr_iscdi=true