Actively Driven Light-Addressable Sensor/Actuator System for Automated pH Control for the Integration in Lab-On-A-Chip (LoC) Platforms

The miniaturization of microfluidic systems usually comes at the cost of more difficult integration of sensors and actuators inside the channel. As an alternative, this work demonstrates the embedding of semiconductor-based sensor and actuator technologies that can be spatially and temporally contro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sensors 2024-03, Vol.9 (3), p.1533-1544
Hauptverfasser: Welden, Rene, Das, Anirban, Krause, Steffi, Schöning, Michael J., Wagner, Patrick H., Wagner, Torsten
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1544
container_issue 3
container_start_page 1533
container_title ACS sensors
container_volume 9
creator Welden, Rene
Das, Anirban
Krause, Steffi
Schöning, Michael J.
Wagner, Patrick H.
Wagner, Torsten
description The miniaturization of microfluidic systems usually comes at the cost of more difficult integration of sensors and actuators inside the channel. As an alternative, this work demonstrates the embedding of semiconductor-based sensor and actuator technologies that can be spatially and temporally controlled from outside the channel using light. The first element is a light-addressable potentiometric sensor, consisting of an Al/Si/SiO2/Si3N4 structure, that can measure pH changes at the Si3N4/electrolyte interface. The pH value is a crucial factor in biological and chemical systems, and besides measuring, it is often important to bring the system out of equilibrium or to adjust and control precisely the surrounding medium. This can be done photoelectrocatalytically by utilizing light-addressable electrodes. These consist of a glass/SnO2:F/TiO2 structure, whereby direct charge transfer between the TiO2 and the electrolyte leads to a pH change upon irradiation. To complement the advantages of both, we integrated a light-addressable sensor with a pH sensitivity of 41.5 mV·pH–1 and a light-addressable electrode into a microfluidic setup. Here, we demonstrated a simultaneous operation with the ability to generate and record pH gradients inside a channel under static and dynamic flow conditions. The results show that dependent on the light-addressable electrode (LAE)-illumination conditions, pH changes up to ΔpH of 2.75 and of 3.52 under static and dynamic conditions, respectively, were spatially monitored by the light-addressable potentiometric sensor. After flushing with fresh buffer solution, the pH returned to its initial value. Depending on the LAE illumination, pH gradients with a maximum pH change of ΔpH of 1.42 were tailored perpendicular to the flow direction. In a final experiment, synchronous LAE illumination led to a stepwise increase in the pH inside the channel.
doi_str_mv 10.1021/acssensors.3c02712
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2938289366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2938289366</sourcerecordid><originalsourceid>FETCH-LOGICAL-a293t-7c9d01afaf603b70561a0e898968507483046f3651e1dd4aaedf0fc1105c40de3</originalsourceid><addsrcrecordid>eNp9kctOwzAQRS0EAgT9ARbIS1ikHceJkyyj8KpUCaTCOnLjSRuUxMV2kPoDfDemLY8Vqxlpzr2jmUvIBYMxg5BNZGUt9lYbO-YVhAkLD8hpyJMs4CKLDv_0J2Rk7SsAsFiEcQrH5ISnURTHiTglH3nlmndsN_TG-NrTWbNcuSBXyqC1ctEinW_XTDw4SKcNnW-sw47Wvs0HpzvpUNH1Ay1074xutwO3QjrtHS6NdI3uaeON5SJ47IM8KFbNml7NdHFNn1rpPN7Zc3JUy9biaF_PyMvd7XPxEMwe76dFPgtkmHEXJFWmgMla1gL4IoFYMAmYZmkm0hiSKOUQiZqLmCFTKpISVQ11xRjEVQQK-Rm52vmujX4b0Lqya2yFbSt71IMt_ZY0TDMuhEfDHVoZba3BulybppNmUzIovyIofyMo9xF40eXef1h0qH4k3w_3wHgHeHH5qgfT-3P_c_wE9IuU7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2938289366</pqid></control><display><type>article</type><title>Actively Driven Light-Addressable Sensor/Actuator System for Automated pH Control for the Integration in Lab-On-A-Chip (LoC) Platforms</title><source>American Chemical Society Journals</source><creator>Welden, Rene ; Das, Anirban ; Krause, Steffi ; Schöning, Michael J. ; Wagner, Patrick H. ; Wagner, Torsten</creator><creatorcontrib>Welden, Rene ; Das, Anirban ; Krause, Steffi ; Schöning, Michael J. ; Wagner, Patrick H. ; Wagner, Torsten</creatorcontrib><description>The miniaturization of microfluidic systems usually comes at the cost of more difficult integration of sensors and actuators inside the channel. As an alternative, this work demonstrates the embedding of semiconductor-based sensor and actuator technologies that can be spatially and temporally controlled from outside the channel using light. The first element is a light-addressable potentiometric sensor, consisting of an Al/Si/SiO2/Si3N4 structure, that can measure pH changes at the Si3N4/electrolyte interface. The pH value is a crucial factor in biological and chemical systems, and besides measuring, it is often important to bring the system out of equilibrium or to adjust and control precisely the surrounding medium. This can be done photoelectrocatalytically by utilizing light-addressable electrodes. These consist of a glass/SnO2:F/TiO2 structure, whereby direct charge transfer between the TiO2 and the electrolyte leads to a pH change upon irradiation. To complement the advantages of both, we integrated a light-addressable sensor with a pH sensitivity of 41.5 mV·pH–1 and a light-addressable electrode into a microfluidic setup. Here, we demonstrated a simultaneous operation with the ability to generate and record pH gradients inside a channel under static and dynamic flow conditions. The results show that dependent on the light-addressable electrode (LAE)-illumination conditions, pH changes up to ΔpH of 2.75 and of 3.52 under static and dynamic conditions, respectively, were spatially monitored by the light-addressable potentiometric sensor. After flushing with fresh buffer solution, the pH returned to its initial value. Depending on the LAE illumination, pH gradients with a maximum pH change of ΔpH of 1.42 were tailored perpendicular to the flow direction. In a final experiment, synchronous LAE illumination led to a stepwise increase in the pH inside the channel.</description><identifier>ISSN: 2379-3694</identifier><identifier>EISSN: 2379-3694</identifier><identifier>DOI: 10.1021/acssensors.3c02712</identifier><identifier>PMID: 38445576</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS sensors, 2024-03, Vol.9 (3), p.1533-1544</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a293t-7c9d01afaf603b70561a0e898968507483046f3651e1dd4aaedf0fc1105c40de3</cites><orcidid>0000-0003-4347-6685 ; 0000-0002-4028-3629 ; 0000-0002-3964-4570 ; 0000-0002-8532-4244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssensors.3c02712$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssensors.3c02712$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38445576$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Welden, Rene</creatorcontrib><creatorcontrib>Das, Anirban</creatorcontrib><creatorcontrib>Krause, Steffi</creatorcontrib><creatorcontrib>Schöning, Michael J.</creatorcontrib><creatorcontrib>Wagner, Patrick H.</creatorcontrib><creatorcontrib>Wagner, Torsten</creatorcontrib><title>Actively Driven Light-Addressable Sensor/Actuator System for Automated pH Control for the Integration in Lab-On-A-Chip (LoC) Platforms</title><title>ACS sensors</title><addtitle>ACS Sens</addtitle><description>The miniaturization of microfluidic systems usually comes at the cost of more difficult integration of sensors and actuators inside the channel. As an alternative, this work demonstrates the embedding of semiconductor-based sensor and actuator technologies that can be spatially and temporally controlled from outside the channel using light. The first element is a light-addressable potentiometric sensor, consisting of an Al/Si/SiO2/Si3N4 structure, that can measure pH changes at the Si3N4/electrolyte interface. The pH value is a crucial factor in biological and chemical systems, and besides measuring, it is often important to bring the system out of equilibrium or to adjust and control precisely the surrounding medium. This can be done photoelectrocatalytically by utilizing light-addressable electrodes. These consist of a glass/SnO2:F/TiO2 structure, whereby direct charge transfer between the TiO2 and the electrolyte leads to a pH change upon irradiation. To complement the advantages of both, we integrated a light-addressable sensor with a pH sensitivity of 41.5 mV·pH–1 and a light-addressable electrode into a microfluidic setup. Here, we demonstrated a simultaneous operation with the ability to generate and record pH gradients inside a channel under static and dynamic flow conditions. The results show that dependent on the light-addressable electrode (LAE)-illumination conditions, pH changes up to ΔpH of 2.75 and of 3.52 under static and dynamic conditions, respectively, were spatially monitored by the light-addressable potentiometric sensor. After flushing with fresh buffer solution, the pH returned to its initial value. Depending on the LAE illumination, pH gradients with a maximum pH change of ΔpH of 1.42 were tailored perpendicular to the flow direction. In a final experiment, synchronous LAE illumination led to a stepwise increase in the pH inside the channel.</description><issn>2379-3694</issn><issn>2379-3694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kctOwzAQRS0EAgT9ARbIS1ikHceJkyyj8KpUCaTCOnLjSRuUxMV2kPoDfDemLY8Vqxlpzr2jmUvIBYMxg5BNZGUt9lYbO-YVhAkLD8hpyJMs4CKLDv_0J2Rk7SsAsFiEcQrH5ISnURTHiTglH3nlmndsN_TG-NrTWbNcuSBXyqC1ctEinW_XTDw4SKcNnW-sw47Wvs0HpzvpUNH1Ay1074xutwO3QjrtHS6NdI3uaeON5SJ47IM8KFbNml7NdHFNn1rpPN7Zc3JUy9biaF_PyMvd7XPxEMwe76dFPgtkmHEXJFWmgMla1gL4IoFYMAmYZmkm0hiSKOUQiZqLmCFTKpISVQ11xRjEVQQK-Rm52vmujX4b0Lqya2yFbSt71IMt_ZY0TDMuhEfDHVoZba3BulybppNmUzIovyIofyMo9xF40eXef1h0qH4k3w_3wHgHeHH5qgfT-3P_c_wE9IuU7g</recordid><startdate>20240322</startdate><enddate>20240322</enddate><creator>Welden, Rene</creator><creator>Das, Anirban</creator><creator>Krause, Steffi</creator><creator>Schöning, Michael J.</creator><creator>Wagner, Patrick H.</creator><creator>Wagner, Torsten</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4347-6685</orcidid><orcidid>https://orcid.org/0000-0002-4028-3629</orcidid><orcidid>https://orcid.org/0000-0002-3964-4570</orcidid><orcidid>https://orcid.org/0000-0002-8532-4244</orcidid></search><sort><creationdate>20240322</creationdate><title>Actively Driven Light-Addressable Sensor/Actuator System for Automated pH Control for the Integration in Lab-On-A-Chip (LoC) Platforms</title><author>Welden, Rene ; Das, Anirban ; Krause, Steffi ; Schöning, Michael J. ; Wagner, Patrick H. ; Wagner, Torsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a293t-7c9d01afaf603b70561a0e898968507483046f3651e1dd4aaedf0fc1105c40de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Welden, Rene</creatorcontrib><creatorcontrib>Das, Anirban</creatorcontrib><creatorcontrib>Krause, Steffi</creatorcontrib><creatorcontrib>Schöning, Michael J.</creatorcontrib><creatorcontrib>Wagner, Patrick H.</creatorcontrib><creatorcontrib>Wagner, Torsten</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Welden, Rene</au><au>Das, Anirban</au><au>Krause, Steffi</au><au>Schöning, Michael J.</au><au>Wagner, Patrick H.</au><au>Wagner, Torsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Actively Driven Light-Addressable Sensor/Actuator System for Automated pH Control for the Integration in Lab-On-A-Chip (LoC) Platforms</atitle><jtitle>ACS sensors</jtitle><addtitle>ACS Sens</addtitle><date>2024-03-22</date><risdate>2024</risdate><volume>9</volume><issue>3</issue><spage>1533</spage><epage>1544</epage><pages>1533-1544</pages><issn>2379-3694</issn><eissn>2379-3694</eissn><abstract>The miniaturization of microfluidic systems usually comes at the cost of more difficult integration of sensors and actuators inside the channel. As an alternative, this work demonstrates the embedding of semiconductor-based sensor and actuator technologies that can be spatially and temporally controlled from outside the channel using light. The first element is a light-addressable potentiometric sensor, consisting of an Al/Si/SiO2/Si3N4 structure, that can measure pH changes at the Si3N4/electrolyte interface. The pH value is a crucial factor in biological and chemical systems, and besides measuring, it is often important to bring the system out of equilibrium or to adjust and control precisely the surrounding medium. This can be done photoelectrocatalytically by utilizing light-addressable electrodes. These consist of a glass/SnO2:F/TiO2 structure, whereby direct charge transfer between the TiO2 and the electrolyte leads to a pH change upon irradiation. To complement the advantages of both, we integrated a light-addressable sensor with a pH sensitivity of 41.5 mV·pH–1 and a light-addressable electrode into a microfluidic setup. Here, we demonstrated a simultaneous operation with the ability to generate and record pH gradients inside a channel under static and dynamic flow conditions. The results show that dependent on the light-addressable electrode (LAE)-illumination conditions, pH changes up to ΔpH of 2.75 and of 3.52 under static and dynamic conditions, respectively, were spatially monitored by the light-addressable potentiometric sensor. After flushing with fresh buffer solution, the pH returned to its initial value. Depending on the LAE illumination, pH gradients with a maximum pH change of ΔpH of 1.42 were tailored perpendicular to the flow direction. In a final experiment, synchronous LAE illumination led to a stepwise increase in the pH inside the channel.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38445576</pmid><doi>10.1021/acssensors.3c02712</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4347-6685</orcidid><orcidid>https://orcid.org/0000-0002-4028-3629</orcidid><orcidid>https://orcid.org/0000-0002-3964-4570</orcidid><orcidid>https://orcid.org/0000-0002-8532-4244</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2379-3694
ispartof ACS sensors, 2024-03, Vol.9 (3), p.1533-1544
issn 2379-3694
2379-3694
language eng
recordid cdi_proquest_miscellaneous_2938289366
source American Chemical Society Journals
title Actively Driven Light-Addressable Sensor/Actuator System for Automated pH Control for the Integration in Lab-On-A-Chip (LoC) Platforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A12%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Actively%20Driven%20Light-Addressable%20Sensor/Actuator%20System%20for%20Automated%20pH%20Control%20for%20the%20Integration%20in%20Lab-On-A-Chip%20(LoC)%20Platforms&rft.jtitle=ACS%20sensors&rft.au=Welden,%20Rene&rft.date=2024-03-22&rft.volume=9&rft.issue=3&rft.spage=1533&rft.epage=1544&rft.pages=1533-1544&rft.issn=2379-3694&rft.eissn=2379-3694&rft_id=info:doi/10.1021/acssensors.3c02712&rft_dat=%3Cproquest_cross%3E2938289366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2938289366&rft_id=info:pmid/38445576&rfr_iscdi=true