Locally applied heat stress during exercise training may promote adaptations to mitochondrial enzyme activities in skeletal muscle

There is some evidence for temperature-dependent stimulation of mitochondrial biogenesis; however, the role of elevated muscle temperature during exercise in mitochondrial adaptation to training has not been studied in humans in vivo. The purpose of this study was to determine the role of elevating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pflügers Archiv 2024-06, Vol.476 (6), p.939-948
Hauptverfasser: Maunder, Ed, King, Andrew, Rothschild, Jeffrey A., Brick, Matthew J., Leigh, Warren B., Hedges, Christopher P., Merry, Troy L., Kilding, Andrew E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:There is some evidence for temperature-dependent stimulation of mitochondrial biogenesis; however, the role of elevated muscle temperature during exercise in mitochondrial adaptation to training has not been studied in humans in vivo. The purpose of this study was to determine the role of elevating muscle temperature during exercise in temperate conditions through the application of mild, local heat stress on mitochondrial adaptations to endurance training. Eight endurance-trained males undertook 3 weeks of supervised cycling training, during which mild (~ 40 °C) heat stress was applied locally to the upper-leg musculature of one leg during all training sessions (HEAT), with the contralateral leg serving as the non-heated, exercising control (CON). Vastus lateralis microbiopsies were obtained from both legs before and after the training period. Training-induced increases in complex I (fold-change, 1.24 ± 0.33 vs. 1.01 ± 0.49, P  = 0.029) and II (fold-change, 1.24 ± 0.33 vs. 1.01 ± 0.49, P  = 0.029) activities were significantly larger in HEAT than CON. No significant effects of training, or interactions between local heat stress application and training, were observed for complex I–V or HSP70 protein expressions. Our data provides partial evidence to support the hypothesis that elevating local muscle temperature during exercise augments training-induced adaptations to mitochondrial enzyme activity.
ISSN:0031-6768
1432-2013
1432-2013
DOI:10.1007/s00424-024-02939-8