A homogeneous formulation for lines in 3 space
Homogeneous coordinates have long been a standard tool of computer graphics. They afford a convenient representation (for) various geometric quantities in two and three dimensions. The representation of lines in three dimensions has, however, never been fully described. This paper presents a homogen...
Gespeichert in:
Veröffentlicht in: | Computer graphics (New York, N.Y.) N.Y.), 1977-08, Vol.11 (2), p.237-241 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 241 |
---|---|
container_issue | 2 |
container_start_page | 237 |
container_title | Computer graphics (New York, N.Y.) |
container_volume | 11 |
creator | Blinn, James F. |
description | Homogeneous coordinates have long been a standard tool of computer graphics. They afford a convenient representation (for) various geometric quantities in two and three dimensions. The representation of lines in three dimensions has, however, never been fully described. This paper presents a homogeneous formulation for lines in 3 dimensions as an anti-symmetric 4x4 matrix which transforms as a tensor. This tensor actually exists in both covariant and contravariant forms, both of which are useful in different situations. The derivation of these forms and their use in solving various geometrical problems is described. |
doi_str_mv | 10.1145/965141.563900 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29381248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29381248</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1608-dcf3f312e9adf9d619d5eed3178872542d1b0de4e4f59a8c53107b2a44760d53</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhS0EEqUwMrBlYku4i-3EHqsKClIllu6WG58hKImD3Qz8e1pSMd2T7tPT08fYPUKBKOSTriQKLGTFNcAFW6CUKhey0pdsAaDrXGkO1-wmpS8AVCjVghWr7DP04YMGClPKfIj91NlDG4ZTzrp2oJS1Q8azNNqGbtmVt12iu_Ndst3L8279mm_fN2_r1Ta3WIHKXeO551iSts5rV6F2kshxrJWqSylKh3twJEh4qa1qJEeo96UVoq7ASb5kj3PtGMP3ROlg-jY11HX2b6YpNVdYCnUE8xlsYkgpkjdjbHsbfwyCOUkxsxQzSznyDzNvm_4fPf9-AUrhWoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29381248</pqid></control><display><type>article</type><title>A homogeneous formulation for lines in 3 space</title><source>ACM Digital Library Complete</source><creator>Blinn, James F.</creator><creatorcontrib>Blinn, James F.</creatorcontrib><description>Homogeneous coordinates have long been a standard tool of computer graphics. They afford a convenient representation (for) various geometric quantities in two and three dimensions. The representation of lines in three dimensions has, however, never been fully described. This paper presents a homogeneous formulation for lines in 3 dimensions as an anti-symmetric 4x4 matrix which transforms as a tensor. This tensor actually exists in both covariant and contravariant forms, both of which are useful in different situations. The derivation of these forms and their use in solving various geometrical problems is described.</description><identifier>ISSN: 0097-8930</identifier><identifier>EISSN: 1558-4569</identifier><identifier>DOI: 10.1145/965141.563900</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Computing methodologies ; Computing methodologies / Computer graphics ; Computing methodologies / Computer graphics / Shape modeling ; Theory of computation ; Theory of computation / Randomness, geometry and discrete structures ; Theory of computation / Randomness, geometry and discrete structures / Computational geometry</subject><ispartof>Computer graphics (New York, N.Y.), 1977-08, Vol.11 (2), p.237-241</ispartof><rights>ACM</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1608-dcf3f312e9adf9d619d5eed3178872542d1b0de4e4f59a8c53107b2a44760d53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/965141.563900$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75971</link.rule.ids></links><search><creatorcontrib>Blinn, James F.</creatorcontrib><title>A homogeneous formulation for lines in 3 space</title><title>Computer graphics (New York, N.Y.)</title><addtitle>ACM SIGGRAPH</addtitle><description>Homogeneous coordinates have long been a standard tool of computer graphics. They afford a convenient representation (for) various geometric quantities in two and three dimensions. The representation of lines in three dimensions has, however, never been fully described. This paper presents a homogeneous formulation for lines in 3 dimensions as an anti-symmetric 4x4 matrix which transforms as a tensor. This tensor actually exists in both covariant and contravariant forms, both of which are useful in different situations. The derivation of these forms and their use in solving various geometrical problems is described.</description><subject>Computing methodologies</subject><subject>Computing methodologies / Computer graphics</subject><subject>Computing methodologies / Computer graphics / Shape modeling</subject><subject>Theory of computation</subject><subject>Theory of computation / Randomness, geometry and discrete structures</subject><subject>Theory of computation / Randomness, geometry and discrete structures / Computational geometry</subject><issn>0097-8930</issn><issn>1558-4569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQhS0EEqUwMrBlYku4i-3EHqsKClIllu6WG58hKImD3Qz8e1pSMd2T7tPT08fYPUKBKOSTriQKLGTFNcAFW6CUKhey0pdsAaDrXGkO1-wmpS8AVCjVghWr7DP04YMGClPKfIj91NlDG4ZTzrp2oJS1Q8azNNqGbtmVt12iu_Ndst3L8279mm_fN2_r1Ta3WIHKXeO551iSts5rV6F2kshxrJWqSylKh3twJEh4qa1qJEeo96UVoq7ASb5kj3PtGMP3ROlg-jY11HX2b6YpNVdYCnUE8xlsYkgpkjdjbHsbfwyCOUkxsxQzSznyDzNvm_4fPf9-AUrhWoI</recordid><startdate>197708</startdate><enddate>197708</enddate><creator>Blinn, James F.</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>197708</creationdate><title>A homogeneous formulation for lines in 3 space</title><author>Blinn, James F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1608-dcf3f312e9adf9d619d5eed3178872542d1b0de4e4f59a8c53107b2a44760d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><topic>Computing methodologies</topic><topic>Computing methodologies / Computer graphics</topic><topic>Computing methodologies / Computer graphics / Shape modeling</topic><topic>Theory of computation</topic><topic>Theory of computation / Randomness, geometry and discrete structures</topic><topic>Theory of computation / Randomness, geometry and discrete structures / Computational geometry</topic><toplevel>online_resources</toplevel><creatorcontrib>Blinn, James F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer graphics (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blinn, James F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A homogeneous formulation for lines in 3 space</atitle><jtitle>Computer graphics (New York, N.Y.)</jtitle><stitle>ACM SIGGRAPH</stitle><date>1977-08</date><risdate>1977</risdate><volume>11</volume><issue>2</issue><spage>237</spage><epage>241</epage><pages>237-241</pages><issn>0097-8930</issn><eissn>1558-4569</eissn><abstract>Homogeneous coordinates have long been a standard tool of computer graphics. They afford a convenient representation (for) various geometric quantities in two and three dimensions. The representation of lines in three dimensions has, however, never been fully described. This paper presents a homogeneous formulation for lines in 3 dimensions as an anti-symmetric 4x4 matrix which transforms as a tensor. This tensor actually exists in both covariant and contravariant forms, both of which are useful in different situations. The derivation of these forms and their use in solving various geometrical problems is described.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/965141.563900</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-8930 |
ispartof | Computer graphics (New York, N.Y.), 1977-08, Vol.11 (2), p.237-241 |
issn | 0097-8930 1558-4569 |
language | eng |
recordid | cdi_proquest_miscellaneous_29381248 |
source | ACM Digital Library Complete |
subjects | Computing methodologies Computing methodologies / Computer graphics Computing methodologies / Computer graphics / Shape modeling Theory of computation Theory of computation / Randomness, geometry and discrete structures Theory of computation / Randomness, geometry and discrete structures / Computational geometry |
title | A homogeneous formulation for lines in 3 space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20homogeneous%20formulation%20for%20lines%20in%203%20space&rft.jtitle=Computer%20graphics%20(New%20York,%20N.Y.)&rft.au=Blinn,%20James%20F.&rft.date=1977-08&rft.volume=11&rft.issue=2&rft.spage=237&rft.epage=241&rft.pages=237-241&rft.issn=0097-8930&rft.eissn=1558-4569&rft_id=info:doi/10.1145/965141.563900&rft_dat=%3Cproquest_cross%3E29381248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29381248&rft_id=info:pmid/&rfr_iscdi=true |