A homogeneous formulation for lines in 3 space

Homogeneous coordinates have long been a standard tool of computer graphics. They afford a convenient representation (for) various geometric quantities in two and three dimensions. The representation of lines in three dimensions has, however, never been fully described. This paper presents a homogen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics (New York, N.Y.) N.Y.), 1977-08, Vol.11 (2), p.237-241
1. Verfasser: Blinn, James F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 241
container_issue 2
container_start_page 237
container_title Computer graphics (New York, N.Y.)
container_volume 11
creator Blinn, James F.
description Homogeneous coordinates have long been a standard tool of computer graphics. They afford a convenient representation (for) various geometric quantities in two and three dimensions. The representation of lines in three dimensions has, however, never been fully described. This paper presents a homogeneous formulation for lines in 3 dimensions as an anti-symmetric 4x4 matrix which transforms as a tensor. This tensor actually exists in both covariant and contravariant forms, both of which are useful in different situations. The derivation of these forms and their use in solving various geometrical problems is described.
doi_str_mv 10.1145/965141.563900
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29381248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29381248</sourcerecordid><originalsourceid>FETCH-LOGICAL-a1608-dcf3f312e9adf9d619d5eed3178872542d1b0de4e4f59a8c53107b2a44760d53</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhS0EEqUwMrBlYku4i-3EHqsKClIllu6WG58hKImD3Qz8e1pSMd2T7tPT08fYPUKBKOSTriQKLGTFNcAFW6CUKhey0pdsAaDrXGkO1-wmpS8AVCjVghWr7DP04YMGClPKfIj91NlDG4ZTzrp2oJS1Q8azNNqGbtmVt12iu_Ndst3L8279mm_fN2_r1Ta3WIHKXeO551iSts5rV6F2kshxrJWqSylKh3twJEh4qa1qJEeo96UVoq7ASb5kj3PtGMP3ROlg-jY11HX2b6YpNVdYCnUE8xlsYkgpkjdjbHsbfwyCOUkxsxQzSznyDzNvm_4fPf9-AUrhWoI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29381248</pqid></control><display><type>article</type><title>A homogeneous formulation for lines in 3 space</title><source>ACM Digital Library Complete</source><creator>Blinn, James F.</creator><creatorcontrib>Blinn, James F.</creatorcontrib><description>Homogeneous coordinates have long been a standard tool of computer graphics. They afford a convenient representation (for) various geometric quantities in two and three dimensions. The representation of lines in three dimensions has, however, never been fully described. This paper presents a homogeneous formulation for lines in 3 dimensions as an anti-symmetric 4x4 matrix which transforms as a tensor. This tensor actually exists in both covariant and contravariant forms, both of which are useful in different situations. The derivation of these forms and their use in solving various geometrical problems is described.</description><identifier>ISSN: 0097-8930</identifier><identifier>EISSN: 1558-4569</identifier><identifier>DOI: 10.1145/965141.563900</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Computing methodologies ; Computing methodologies / Computer graphics ; Computing methodologies / Computer graphics / Shape modeling ; Theory of computation ; Theory of computation / Randomness, geometry and discrete structures ; Theory of computation / Randomness, geometry and discrete structures / Computational geometry</subject><ispartof>Computer graphics (New York, N.Y.), 1977-08, Vol.11 (2), p.237-241</ispartof><rights>ACM</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a1608-dcf3f312e9adf9d619d5eed3178872542d1b0de4e4f59a8c53107b2a44760d53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/965141.563900$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75971</link.rule.ids></links><search><creatorcontrib>Blinn, James F.</creatorcontrib><title>A homogeneous formulation for lines in 3 space</title><title>Computer graphics (New York, N.Y.)</title><addtitle>ACM SIGGRAPH</addtitle><description>Homogeneous coordinates have long been a standard tool of computer graphics. They afford a convenient representation (for) various geometric quantities in two and three dimensions. The representation of lines in three dimensions has, however, never been fully described. This paper presents a homogeneous formulation for lines in 3 dimensions as an anti-symmetric 4x4 matrix which transforms as a tensor. This tensor actually exists in both covariant and contravariant forms, both of which are useful in different situations. The derivation of these forms and their use in solving various geometrical problems is described.</description><subject>Computing methodologies</subject><subject>Computing methodologies / Computer graphics</subject><subject>Computing methodologies / Computer graphics / Shape modeling</subject><subject>Theory of computation</subject><subject>Theory of computation / Randomness, geometry and discrete structures</subject><subject>Theory of computation / Randomness, geometry and discrete structures / Computational geometry</subject><issn>0097-8930</issn><issn>1558-4569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQhS0EEqUwMrBlYku4i-3EHqsKClIllu6WG58hKImD3Qz8e1pSMd2T7tPT08fYPUKBKOSTriQKLGTFNcAFW6CUKhey0pdsAaDrXGkO1-wmpS8AVCjVghWr7DP04YMGClPKfIj91NlDG4ZTzrp2oJS1Q8azNNqGbtmVt12iu_Ndst3L8279mm_fN2_r1Ta3WIHKXeO551iSts5rV6F2kshxrJWqSylKh3twJEh4qa1qJEeo96UVoq7ASb5kj3PtGMP3ROlg-jY11HX2b6YpNVdYCnUE8xlsYkgpkjdjbHsbfwyCOUkxsxQzSznyDzNvm_4fPf9-AUrhWoI</recordid><startdate>197708</startdate><enddate>197708</enddate><creator>Blinn, James F.</creator><general>ACM</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>197708</creationdate><title>A homogeneous formulation for lines in 3 space</title><author>Blinn, James F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a1608-dcf3f312e9adf9d619d5eed3178872542d1b0de4e4f59a8c53107b2a44760d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><topic>Computing methodologies</topic><topic>Computing methodologies / Computer graphics</topic><topic>Computing methodologies / Computer graphics / Shape modeling</topic><topic>Theory of computation</topic><topic>Theory of computation / Randomness, geometry and discrete structures</topic><topic>Theory of computation / Randomness, geometry and discrete structures / Computational geometry</topic><toplevel>online_resources</toplevel><creatorcontrib>Blinn, James F.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer graphics (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blinn, James F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A homogeneous formulation for lines in 3 space</atitle><jtitle>Computer graphics (New York, N.Y.)</jtitle><stitle>ACM SIGGRAPH</stitle><date>1977-08</date><risdate>1977</risdate><volume>11</volume><issue>2</issue><spage>237</spage><epage>241</epage><pages>237-241</pages><issn>0097-8930</issn><eissn>1558-4569</eissn><abstract>Homogeneous coordinates have long been a standard tool of computer graphics. They afford a convenient representation (for) various geometric quantities in two and three dimensions. The representation of lines in three dimensions has, however, never been fully described. This paper presents a homogeneous formulation for lines in 3 dimensions as an anti-symmetric 4x4 matrix which transforms as a tensor. This tensor actually exists in both covariant and contravariant forms, both of which are useful in different situations. The derivation of these forms and their use in solving various geometrical problems is described.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/965141.563900</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-8930
ispartof Computer graphics (New York, N.Y.), 1977-08, Vol.11 (2), p.237-241
issn 0097-8930
1558-4569
language eng
recordid cdi_proquest_miscellaneous_29381248
source ACM Digital Library Complete
subjects Computing methodologies
Computing methodologies / Computer graphics
Computing methodologies / Computer graphics / Shape modeling
Theory of computation
Theory of computation / Randomness, geometry and discrete structures
Theory of computation / Randomness, geometry and discrete structures / Computational geometry
title A homogeneous formulation for lines in 3 space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A36%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20homogeneous%20formulation%20for%20lines%20in%203%20space&rft.jtitle=Computer%20graphics%20(New%20York,%20N.Y.)&rft.au=Blinn,%20James%20F.&rft.date=1977-08&rft.volume=11&rft.issue=2&rft.spage=237&rft.epage=241&rft.pages=237-241&rft.issn=0097-8930&rft.eissn=1558-4569&rft_id=info:doi/10.1145/965141.563900&rft_dat=%3Cproquest_cross%3E29381248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29381248&rft_id=info:pmid/&rfr_iscdi=true