Digital twins and Bayesian dynamic borrowing: Two recent approaches for incorporating historical control data

Recent years have seen an increasing interest in incorporating external control data for designing and evaluating randomized clinical trials (RCT). This may decrease costs and shorten inclusion times by reducing sample sizes. For small populations, with limited recruitment, this can be especially im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutical statistics : the journal of the pharmaceutical industry 2024-09, Vol.23 (5), p.611-629
Hauptverfasser: Burman, Carl‐Fredrik, Hermansson, Erik, Bock, David, Franzén, Stefan, Svensson, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 629
container_issue 5
container_start_page 611
container_title Pharmaceutical statistics : the journal of the pharmaceutical industry
container_volume 23
creator Burman, Carl‐Fredrik
Hermansson, Erik
Bock, David
Franzén, Stefan
Svensson, David
description Recent years have seen an increasing interest in incorporating external control data for designing and evaluating randomized clinical trials (RCT). This may decrease costs and shorten inclusion times by reducing sample sizes. For small populations, with limited recruitment, this can be especially important. Bayesian dynamic borrowing (BDB) has been a popular choice as it claims to protect against potential prior data conflict. Digital twins (DT) has recently been proposed as another method to utilize historical data. DT, also known as PROCOVA™, is based on constructing a prognostic score from historical control data, typically using machine learning. This score is included in a pre‐specified ANCOVA as the primary analysis of the RCT. The promise of this idea is power increase while guaranteeing strong type 1 error control. In this paper, we apply analytic derivations and simulations to analyze and discuss examples of these two approaches. We conclude that BDB and DT, although similar in scope, have fundamental differences which need be considered in the specific application. The inflation of the type 1 error is a serious issue for BDB, while more evidence is needed of a tangible value of DT for real RCTs.
doi_str_mv 10.1002/pst.2376
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2937705305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937705305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3106-6baf13edb76a452b1febf57aaf36a4d02a4618652c51f0f50d7c6acec9c2da213</originalsourceid><addsrcrecordid>eNp1kdtKxDAURYMoXkbBL5CAL75Uc2nTqW_eFQQFx-dwmiYaaZOaZBjm7413EIRAwjmLxSYboV1KDikh7GiM6ZDxWqygTVrxpqCCstWfNyk30FaML4TQetpU62iDT0veUC420XBun2yCHqeFdRGD6_ApLHW04HC3dDBYhVsfgs_rp2M8W3gctNIuYRjH4EE964iND9g65cPoA6QM4mcbkw9WZbHyLgXf4w4SbKM1A33UO1_3BD1eXszOrovbu6ubs5PbQnFKRCFaMJTrrq0FlBVrqdGtqWoAw_OgIwxKQaeiYqqihpiKdLUSoLRqFOuAUT5BB5_eHPF1rmOSg41K9z047edRsobXNal4PhO0_wd98fPgcjrJKWsYYSVpfoUq-BiDNnIMdoCwlJTI9wpkrkC-V5DRvS_hvB109wN-_3kGik9gYXu9_Fck7x9mH8I3KEaRoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3129202409</pqid></control><display><type>article</type><title>Digital twins and Bayesian dynamic borrowing: Two recent approaches for incorporating historical control data</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Burman, Carl‐Fredrik ; Hermansson, Erik ; Bock, David ; Franzén, Stefan ; Svensson, David</creator><creatorcontrib>Burman, Carl‐Fredrik ; Hermansson, Erik ; Bock, David ; Franzén, Stefan ; Svensson, David</creatorcontrib><description>Recent years have seen an increasing interest in incorporating external control data for designing and evaluating randomized clinical trials (RCT). This may decrease costs and shorten inclusion times by reducing sample sizes. For small populations, with limited recruitment, this can be especially important. Bayesian dynamic borrowing (BDB) has been a popular choice as it claims to protect against potential prior data conflict. Digital twins (DT) has recently been proposed as another method to utilize historical data. DT, also known as PROCOVA™, is based on constructing a prognostic score from historical control data, typically using machine learning. This score is included in a pre‐specified ANCOVA as the primary analysis of the RCT. The promise of this idea is power increase while guaranteeing strong type 1 error control. In this paper, we apply analytic derivations and simulations to analyze and discuss examples of these two approaches. We conclude that BDB and DT, although similar in scope, have fundamental differences which need be considered in the specific application. The inflation of the type 1 error is a serious issue for BDB, while more evidence is needed of a tangible value of DT for real RCTs.</description><identifier>ISSN: 1539-1604</identifier><identifier>ISSN: 1539-1612</identifier><identifier>EISSN: 1539-1612</identifier><identifier>DOI: 10.1002/pst.2376</identifier><identifier>PMID: 38439136</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Bayes Theorem ; clinical trials ; Computer Simulation ; Data Interpretation, Statistical ; Digital twins ; Humans ; Machine Learning ; Models, Statistical ; PROCOVA ; prognostic score ; Randomized Controlled Trials as Topic - methods ; Randomized Controlled Trials as Topic - statistics &amp; numerical data ; Research Design ; robust mixture prior ; Sample Size</subject><ispartof>Pharmaceutical statistics : the journal of the pharmaceutical industry, 2024-09, Vol.23 (5), p.611-629</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3106-6baf13edb76a452b1febf57aaf36a4d02a4618652c51f0f50d7c6acec9c2da213</cites><orcidid>0000-0001-6104-7150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpst.2376$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpst.2376$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38439136$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Burman, Carl‐Fredrik</creatorcontrib><creatorcontrib>Hermansson, Erik</creatorcontrib><creatorcontrib>Bock, David</creatorcontrib><creatorcontrib>Franzén, Stefan</creatorcontrib><creatorcontrib>Svensson, David</creatorcontrib><title>Digital twins and Bayesian dynamic borrowing: Two recent approaches for incorporating historical control data</title><title>Pharmaceutical statistics : the journal of the pharmaceutical industry</title><addtitle>Pharm Stat</addtitle><description>Recent years have seen an increasing interest in incorporating external control data for designing and evaluating randomized clinical trials (RCT). This may decrease costs and shorten inclusion times by reducing sample sizes. For small populations, with limited recruitment, this can be especially important. Bayesian dynamic borrowing (BDB) has been a popular choice as it claims to protect against potential prior data conflict. Digital twins (DT) has recently been proposed as another method to utilize historical data. DT, also known as PROCOVA™, is based on constructing a prognostic score from historical control data, typically using machine learning. This score is included in a pre‐specified ANCOVA as the primary analysis of the RCT. The promise of this idea is power increase while guaranteeing strong type 1 error control. In this paper, we apply analytic derivations and simulations to analyze and discuss examples of these two approaches. We conclude that BDB and DT, although similar in scope, have fundamental differences which need be considered in the specific application. The inflation of the type 1 error is a serious issue for BDB, while more evidence is needed of a tangible value of DT for real RCTs.</description><subject>Bayes Theorem</subject><subject>clinical trials</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Digital twins</subject><subject>Humans</subject><subject>Machine Learning</subject><subject>Models, Statistical</subject><subject>PROCOVA</subject><subject>prognostic score</subject><subject>Randomized Controlled Trials as Topic - methods</subject><subject>Randomized Controlled Trials as Topic - statistics &amp; numerical data</subject><subject>Research Design</subject><subject>robust mixture prior</subject><subject>Sample Size</subject><issn>1539-1604</issn><issn>1539-1612</issn><issn>1539-1612</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kdtKxDAURYMoXkbBL5CAL75Uc2nTqW_eFQQFx-dwmiYaaZOaZBjm7413EIRAwjmLxSYboV1KDikh7GiM6ZDxWqygTVrxpqCCstWfNyk30FaML4TQetpU62iDT0veUC420XBun2yCHqeFdRGD6_ApLHW04HC3dDBYhVsfgs_rp2M8W3gctNIuYRjH4EE964iND9g65cPoA6QM4mcbkw9WZbHyLgXf4w4SbKM1A33UO1_3BD1eXszOrovbu6ubs5PbQnFKRCFaMJTrrq0FlBVrqdGtqWoAw_OgIwxKQaeiYqqihpiKdLUSoLRqFOuAUT5BB5_eHPF1rmOSg41K9z047edRsobXNal4PhO0_wd98fPgcjrJKWsYYSVpfoUq-BiDNnIMdoCwlJTI9wpkrkC-V5DRvS_hvB109wN-_3kGik9gYXu9_Fck7x9mH8I3KEaRoA</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Burman, Carl‐Fredrik</creator><creator>Hermansson, Erik</creator><creator>Bock, David</creator><creator>Franzén, Stefan</creator><creator>Svensson, David</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6104-7150</orcidid></search><sort><creationdate>202409</creationdate><title>Digital twins and Bayesian dynamic borrowing: Two recent approaches for incorporating historical control data</title><author>Burman, Carl‐Fredrik ; Hermansson, Erik ; Bock, David ; Franzén, Stefan ; Svensson, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3106-6baf13edb76a452b1febf57aaf36a4d02a4618652c51f0f50d7c6acec9c2da213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bayes Theorem</topic><topic>clinical trials</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Digital twins</topic><topic>Humans</topic><topic>Machine Learning</topic><topic>Models, Statistical</topic><topic>PROCOVA</topic><topic>prognostic score</topic><topic>Randomized Controlled Trials as Topic - methods</topic><topic>Randomized Controlled Trials as Topic - statistics &amp; numerical data</topic><topic>Research Design</topic><topic>robust mixture prior</topic><topic>Sample Size</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burman, Carl‐Fredrik</creatorcontrib><creatorcontrib>Hermansson, Erik</creatorcontrib><creatorcontrib>Bock, David</creatorcontrib><creatorcontrib>Franzén, Stefan</creatorcontrib><creatorcontrib>Svensson, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Pharmaceutical statistics : the journal of the pharmaceutical industry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burman, Carl‐Fredrik</au><au>Hermansson, Erik</au><au>Bock, David</au><au>Franzén, Stefan</au><au>Svensson, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Digital twins and Bayesian dynamic borrowing: Two recent approaches for incorporating historical control data</atitle><jtitle>Pharmaceutical statistics : the journal of the pharmaceutical industry</jtitle><addtitle>Pharm Stat</addtitle><date>2024-09</date><risdate>2024</risdate><volume>23</volume><issue>5</issue><spage>611</spage><epage>629</epage><pages>611-629</pages><issn>1539-1604</issn><issn>1539-1612</issn><eissn>1539-1612</eissn><abstract>Recent years have seen an increasing interest in incorporating external control data for designing and evaluating randomized clinical trials (RCT). This may decrease costs and shorten inclusion times by reducing sample sizes. For small populations, with limited recruitment, this can be especially important. Bayesian dynamic borrowing (BDB) has been a popular choice as it claims to protect against potential prior data conflict. Digital twins (DT) has recently been proposed as another method to utilize historical data. DT, also known as PROCOVA™, is based on constructing a prognostic score from historical control data, typically using machine learning. This score is included in a pre‐specified ANCOVA as the primary analysis of the RCT. The promise of this idea is power increase while guaranteeing strong type 1 error control. In this paper, we apply analytic derivations and simulations to analyze and discuss examples of these two approaches. We conclude that BDB and DT, although similar in scope, have fundamental differences which need be considered in the specific application. The inflation of the type 1 error is a serious issue for BDB, while more evidence is needed of a tangible value of DT for real RCTs.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38439136</pmid><doi>10.1002/pst.2376</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6104-7150</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1539-1604
ispartof Pharmaceutical statistics : the journal of the pharmaceutical industry, 2024-09, Vol.23 (5), p.611-629
issn 1539-1604
1539-1612
1539-1612
language eng
recordid cdi_proquest_miscellaneous_2937705305
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bayes Theorem
clinical trials
Computer Simulation
Data Interpretation, Statistical
Digital twins
Humans
Machine Learning
Models, Statistical
PROCOVA
prognostic score
Randomized Controlled Trials as Topic - methods
Randomized Controlled Trials as Topic - statistics & numerical data
Research Design
robust mixture prior
Sample Size
title Digital twins and Bayesian dynamic borrowing: Two recent approaches for incorporating historical control data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Digital%20twins%20and%20Bayesian%20dynamic%20borrowing:%20Two%20recent%20approaches%20for%20incorporating%20historical%20control%20data&rft.jtitle=Pharmaceutical%20statistics%20:%20the%20journal%20of%20the%20pharmaceutical%20industry&rft.au=Burman,%20Carl%E2%80%90Fredrik&rft.date=2024-09&rft.volume=23&rft.issue=5&rft.spage=611&rft.epage=629&rft.pages=611-629&rft.issn=1539-1604&rft.eissn=1539-1612&rft_id=info:doi/10.1002/pst.2376&rft_dat=%3Cproquest_cross%3E2937705305%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3129202409&rft_id=info:pmid/38439136&rfr_iscdi=true