High resolution acoustic sensing based on microcavity optomechanical oscillator
In this paper, a simple sensing method based on a silicon oxide microcavity optomechanical oscillator (OMO) is proposed and demonstrated for the detection of acoustic signals. Firstly, the resonance damping was reduced by improving the optical quality factor (Q ) and increasing the sphere-to-neck ra...
Gespeichert in:
Veröffentlicht in: | Optics express 2024-02, Vol.32 (4), p.4816-4826 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4826 |
---|---|
container_issue | 4 |
container_start_page | 4816 |
container_title | Optics express |
container_volume | 32 |
creator | Wang, Rong Liu, WenYao Pan, Ziwen Fan, WenJie Liu, Lai Xing, Enbo Zhou, Yanru Tang, Jun Liu, Jun |
description | In this paper, a simple sensing method based on a silicon oxide microcavity optomechanical oscillator (OMO) is proposed and demonstrated for the detection of acoustic signals. Firstly, the resonance damping was reduced by improving the optical quality factor (Q
) and increasing the sphere-to-neck ratio. After optimizing the process, a microsphere OMO was fabricated, which has an ultra-high mechanical quality factor (6.8 × 10
) and greater sphere-to-neck ratio (∼11:1), based on which ultra-narrow linewidth phonon laser (∼1 Hz) is constructed. Secondly, by changing the refractive index of the coupling interval, the low-frequency acoustic pressure signal is efficiently coupled into the microcavity OMO to construct a high-resolution acoustic sensor. This sensing mechanism can not only measure the acoustic pressure, but also use the sideband signal in the modulation mechanism to measure the frequency of acoustic signals (15 Hz∼16 kHz), the sensitivity is 10.3 kHz/Pa, the minimum detectable pressure is 1.1 mPa, and noise-limited minimum detectable pressure is 28.8 µPa/Hz
. It is the highest detection resolution compared with the same type of low-frequency acoustic signal detection currently reported. This OMO-based acoustic sensing detection method opens up a new path for future miniaturized, ultra-high-precision, and cost-effective acoustic sensing. |
doi_str_mv | 10.1364/OE.510033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2937703750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937703750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-9c6ed92b8ff9795beadc1f31b561d622b6788e60253d3d984cc24ba2f062b28e3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURQdRbK0u_AOSpS5S5yuZmaWUaIVCNroe5ivtSJKpmYnQf2-kVVy9B-9wue8AcIvgEpGSPtbVskAQEnIG5ggKmlPI2fm_fQauYvyAEFEm2CWYEU6JwJjOQb322102uBjaMfnQZ8qEMSZvsuj66PttplV0NpsunTdDMOrLp0MW9il0zuxU741qsxCNb1uVwnANLhrVRndzmgvw_ly9rdb5pn55XT1tcoM5TLkwpbMCa940golCO2UNagjSRYlsibEuGeeuhLgglljBqTGYaoUbWGKNuSMLcH_M3Q_hc3Qxyc5H46YSvZsekFgQxiBhBZzQhyM61Y9xcI3cD75Tw0EiKH_8ybqSR38Te3eKHXXn7B_5K4x8AzDqa3k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937703750</pqid></control><display><type>article</type><title>High resolution acoustic sensing based on microcavity optomechanical oscillator</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Rong ; Liu, WenYao ; Pan, Ziwen ; Fan, WenJie ; Liu, Lai ; Xing, Enbo ; Zhou, Yanru ; Tang, Jun ; Liu, Jun</creator><creatorcontrib>Wang, Rong ; Liu, WenYao ; Pan, Ziwen ; Fan, WenJie ; Liu, Lai ; Xing, Enbo ; Zhou, Yanru ; Tang, Jun ; Liu, Jun</creatorcontrib><description>In this paper, a simple sensing method based on a silicon oxide microcavity optomechanical oscillator (OMO) is proposed and demonstrated for the detection of acoustic signals. Firstly, the resonance damping was reduced by improving the optical quality factor (Q
) and increasing the sphere-to-neck ratio. After optimizing the process, a microsphere OMO was fabricated, which has an ultra-high mechanical quality factor (6.8 × 10
) and greater sphere-to-neck ratio (∼11:1), based on which ultra-narrow linewidth phonon laser (∼1 Hz) is constructed. Secondly, by changing the refractive index of the coupling interval, the low-frequency acoustic pressure signal is efficiently coupled into the microcavity OMO to construct a high-resolution acoustic sensor. This sensing mechanism can not only measure the acoustic pressure, but also use the sideband signal in the modulation mechanism to measure the frequency of acoustic signals (15 Hz∼16 kHz), the sensitivity is 10.3 kHz/Pa, the minimum detectable pressure is 1.1 mPa, and noise-limited minimum detectable pressure is 28.8 µPa/Hz
. It is the highest detection resolution compared with the same type of low-frequency acoustic signal detection currently reported. This OMO-based acoustic sensing detection method opens up a new path for future miniaturized, ultra-high-precision, and cost-effective acoustic sensing.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.510033</identifier><identifier>PMID: 38439224</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2024-02, Vol.32 (4), p.4816-4826</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c280t-9c6ed92b8ff9795beadc1f31b561d622b6788e60253d3d984cc24ba2f062b28e3</cites><orcidid>0000-0002-1053-1636</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38439224$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Liu, WenYao</creatorcontrib><creatorcontrib>Pan, Ziwen</creatorcontrib><creatorcontrib>Fan, WenJie</creatorcontrib><creatorcontrib>Liu, Lai</creatorcontrib><creatorcontrib>Xing, Enbo</creatorcontrib><creatorcontrib>Zhou, Yanru</creatorcontrib><creatorcontrib>Tang, Jun</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><title>High resolution acoustic sensing based on microcavity optomechanical oscillator</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>In this paper, a simple sensing method based on a silicon oxide microcavity optomechanical oscillator (OMO) is proposed and demonstrated for the detection of acoustic signals. Firstly, the resonance damping was reduced by improving the optical quality factor (Q
) and increasing the sphere-to-neck ratio. After optimizing the process, a microsphere OMO was fabricated, which has an ultra-high mechanical quality factor (6.8 × 10
) and greater sphere-to-neck ratio (∼11:1), based on which ultra-narrow linewidth phonon laser (∼1 Hz) is constructed. Secondly, by changing the refractive index of the coupling interval, the low-frequency acoustic pressure signal is efficiently coupled into the microcavity OMO to construct a high-resolution acoustic sensor. This sensing mechanism can not only measure the acoustic pressure, but also use the sideband signal in the modulation mechanism to measure the frequency of acoustic signals (15 Hz∼16 kHz), the sensitivity is 10.3 kHz/Pa, the minimum detectable pressure is 1.1 mPa, and noise-limited minimum detectable pressure is 28.8 µPa/Hz
. It is the highest detection resolution compared with the same type of low-frequency acoustic signal detection currently reported. This OMO-based acoustic sensing detection method opens up a new path for future miniaturized, ultra-high-precision, and cost-effective acoustic sensing.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AURQdRbK0u_AOSpS5S5yuZmaWUaIVCNroe5ivtSJKpmYnQf2-kVVy9B-9wue8AcIvgEpGSPtbVskAQEnIG5ggKmlPI2fm_fQauYvyAEFEm2CWYEU6JwJjOQb322102uBjaMfnQZ8qEMSZvsuj66PttplV0NpsunTdDMOrLp0MW9il0zuxU741qsxCNb1uVwnANLhrVRndzmgvw_ly9rdb5pn55XT1tcoM5TLkwpbMCa940golCO2UNagjSRYlsibEuGeeuhLgglljBqTGYaoUbWGKNuSMLcH_M3Q_hc3Qxyc5H46YSvZsekFgQxiBhBZzQhyM61Y9xcI3cD75Tw0EiKH_8ybqSR38Te3eKHXXn7B_5K4x8AzDqa3k</recordid><startdate>20240212</startdate><enddate>20240212</enddate><creator>Wang, Rong</creator><creator>Liu, WenYao</creator><creator>Pan, Ziwen</creator><creator>Fan, WenJie</creator><creator>Liu, Lai</creator><creator>Xing, Enbo</creator><creator>Zhou, Yanru</creator><creator>Tang, Jun</creator><creator>Liu, Jun</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1053-1636</orcidid></search><sort><creationdate>20240212</creationdate><title>High resolution acoustic sensing based on microcavity optomechanical oscillator</title><author>Wang, Rong ; Liu, WenYao ; Pan, Ziwen ; Fan, WenJie ; Liu, Lai ; Xing, Enbo ; Zhou, Yanru ; Tang, Jun ; Liu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-9c6ed92b8ff9795beadc1f31b561d622b6788e60253d3d984cc24ba2f062b28e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Liu, WenYao</creatorcontrib><creatorcontrib>Pan, Ziwen</creatorcontrib><creatorcontrib>Fan, WenJie</creatorcontrib><creatorcontrib>Liu, Lai</creatorcontrib><creatorcontrib>Xing, Enbo</creatorcontrib><creatorcontrib>Zhou, Yanru</creatorcontrib><creatorcontrib>Tang, Jun</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Rong</au><au>Liu, WenYao</au><au>Pan, Ziwen</au><au>Fan, WenJie</au><au>Liu, Lai</au><au>Xing, Enbo</au><au>Zhou, Yanru</au><au>Tang, Jun</au><au>Liu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High resolution acoustic sensing based on microcavity optomechanical oscillator</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2024-02-12</date><risdate>2024</risdate><volume>32</volume><issue>4</issue><spage>4816</spage><epage>4826</epage><pages>4816-4826</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>In this paper, a simple sensing method based on a silicon oxide microcavity optomechanical oscillator (OMO) is proposed and demonstrated for the detection of acoustic signals. Firstly, the resonance damping was reduced by improving the optical quality factor (Q
) and increasing the sphere-to-neck ratio. After optimizing the process, a microsphere OMO was fabricated, which has an ultra-high mechanical quality factor (6.8 × 10
) and greater sphere-to-neck ratio (∼11:1), based on which ultra-narrow linewidth phonon laser (∼1 Hz) is constructed. Secondly, by changing the refractive index of the coupling interval, the low-frequency acoustic pressure signal is efficiently coupled into the microcavity OMO to construct a high-resolution acoustic sensor. This sensing mechanism can not only measure the acoustic pressure, but also use the sideband signal in the modulation mechanism to measure the frequency of acoustic signals (15 Hz∼16 kHz), the sensitivity is 10.3 kHz/Pa, the minimum detectable pressure is 1.1 mPa, and noise-limited minimum detectable pressure is 28.8 µPa/Hz
. It is the highest detection resolution compared with the same type of low-frequency acoustic signal detection currently reported. This OMO-based acoustic sensing detection method opens up a new path for future miniaturized, ultra-high-precision, and cost-effective acoustic sensing.</abstract><cop>United States</cop><pmid>38439224</pmid><doi>10.1364/OE.510033</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1053-1636</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2024-02, Vol.32 (4), p.4816-4826 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_2937703750 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | High resolution acoustic sensing based on microcavity optomechanical oscillator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20resolution%20acoustic%20sensing%20based%20on%20microcavity%20optomechanical%20oscillator&rft.jtitle=Optics%20express&rft.au=Wang,%20Rong&rft.date=2024-02-12&rft.volume=32&rft.issue=4&rft.spage=4816&rft.epage=4826&rft.pages=4816-4826&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.510033&rft_dat=%3Cproquest_cross%3E2937703750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937703750&rft_id=info:pmid/38439224&rfr_iscdi=true |