The impact of heart valve and partial heart transplant models on the development of banking methods for tissues and organs: A concise review
Cryopreserved human heart valves fill a crucial role in the treatment for congenital cardiac anomalies, since the use of alternative mechanical and xenogeneic tissue valves have historically been limited in babies. Heart valve models have been used since 1998 to better understand the impact of cryop...
Gespeichert in:
Veröffentlicht in: | Cryobiology 2024-06, Vol.115, p.104880-104880, Article 104880 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 104880 |
---|---|
container_issue | |
container_start_page | 104880 |
container_title | Cryobiology |
container_volume | 115 |
creator | Vogel, Andrew D. Suk, Rebecca Haran, Christa Dickinson, Patrick G. Helke, Kristi L. Hassid, Marc Fitzgerald, David C. Turek, Joseph W. Brockbank, Kelvin G.M. Rajab, Taufiek Konrad |
description | Cryopreserved human heart valves fill a crucial role in the treatment for congenital cardiac anomalies, since the use of alternative mechanical and xenogeneic tissue valves have historically been limited in babies. Heart valve models have been used since 1998 to better understand the impact of cryopreservation variables on the heart valve tissue components with the ultimate goals of improving cryopreserved tissue outcomes and potentially extrapolating results with tissues to organs. Cryopreservation traditionally relies on conventional freezing, employing cryoprotective agents, and slow cooling to sub-zero centigrade temperatures; but it is plagued by the formation of ice crystals and cell damage upon thawing. Researchers have identified ice-free vitrification procedures and developed a new rapid warming method termed nanowarming. Nanowarming is an emerging method that utilizes targeted application of energy at the nanoscale level to rapidly rewarm vitrified tissues, such as heart valves, uniformly for transplantation. Vitrification and nanowarming methods hold great promise for surgery, enabling the storage and transplantation of tissues for various applications, including tissue repair and replacement. These innovations have the potential to revolutionize complex tissue and organ transplantation, including partial heart transplantation. Banking these grafts addresses organ scarcity by extending preservation duration while preserving biological activity with maintenance of structural fidelity. While ice-free vitrification and nanowarming show remarkable potential, they are still in early development. Further interdisciplinary research must be dedicated to exploring the remaining challenges that include scalability, optimizing cryoprotectant solutions, and ensuring long-term viability upon rewarming in vitro and in vivo. |
doi_str_mv | 10.1016/j.cryobiol.2024.104880 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2937702676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001122402400035X</els_id><sourcerecordid>2937702676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-4b3fa16cf6fa9accb55eb7cdd9420bb292ccd4515e39141b9f79eca75e41e42c3</originalsourceid><addsrcrecordid>eNqFkcluFDEQhi0EIkOSV4h85NKDt17MiSgKixSJSzhbXqozHrrtxvZMlHfIQ-PJTLhyKlXpr6-WH6ErStaU0O7Tdm3TUzQ-TmtGmKhFMQzkDVpRIknDuGRv0YoQShvGBDlDH3LeEkK6nov36IwPgveDHFbo-X4D2M-LtgXHEW9Ap4L3etoD1sHhpaZeT6d6STrkZdKh4Dk6mDKOAZcKcLCHKS4zhBeK0eG3Dw94hrKJLuMxJlx8zjvIL9SYHiroM77GNgbrM-AEew-PF-jdqKcMl6d4jn59vb2_-d7c_fz24-b6rrGctqURho-adnbsRi21taZtwfTWOSkYMYZJZq0TLW2BSyqokWMvweq-BUFBMMvP0ccjd0nxT12qqNlnC1O9DOIuKyZ53xPW9V2VdkepTTHnBKNakp91elKUqIMTaqtenVAHJ9TRidp4dZqxMzO4f22vr6-CL0dB_ePh-qSy9RAsOJ_AFuWi_9-Mv9bmoNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2937702676</pqid></control><display><type>article</type><title>The impact of heart valve and partial heart transplant models on the development of banking methods for tissues and organs: A concise review</title><source>Elsevier ScienceDirect Journals</source><creator>Vogel, Andrew D. ; Suk, Rebecca ; Haran, Christa ; Dickinson, Patrick G. ; Helke, Kristi L. ; Hassid, Marc ; Fitzgerald, David C. ; Turek, Joseph W. ; Brockbank, Kelvin G.M. ; Rajab, Taufiek Konrad</creator><creatorcontrib>Vogel, Andrew D. ; Suk, Rebecca ; Haran, Christa ; Dickinson, Patrick G. ; Helke, Kristi L. ; Hassid, Marc ; Fitzgerald, David C. ; Turek, Joseph W. ; Brockbank, Kelvin G.M. ; Rajab, Taufiek Konrad</creatorcontrib><description>Cryopreserved human heart valves fill a crucial role in the treatment for congenital cardiac anomalies, since the use of alternative mechanical and xenogeneic tissue valves have historically been limited in babies. Heart valve models have been used since 1998 to better understand the impact of cryopreservation variables on the heart valve tissue components with the ultimate goals of improving cryopreserved tissue outcomes and potentially extrapolating results with tissues to organs. Cryopreservation traditionally relies on conventional freezing, employing cryoprotective agents, and slow cooling to sub-zero centigrade temperatures; but it is plagued by the formation of ice crystals and cell damage upon thawing. Researchers have identified ice-free vitrification procedures and developed a new rapid warming method termed nanowarming. Nanowarming is an emerging method that utilizes targeted application of energy at the nanoscale level to rapidly rewarm vitrified tissues, such as heart valves, uniformly for transplantation. Vitrification and nanowarming methods hold great promise for surgery, enabling the storage and transplantation of tissues for various applications, including tissue repair and replacement. These innovations have the potential to revolutionize complex tissue and organ transplantation, including partial heart transplantation. Banking these grafts addresses organ scarcity by extending preservation duration while preserving biological activity with maintenance of structural fidelity. While ice-free vitrification and nanowarming show remarkable potential, they are still in early development. Further interdisciplinary research must be dedicated to exploring the remaining challenges that include scalability, optimizing cryoprotectant solutions, and ensuring long-term viability upon rewarming in vitro and in vivo.</description><identifier>ISSN: 0011-2240</identifier><identifier>EISSN: 1090-2392</identifier><identifier>DOI: 10.1016/j.cryobiol.2024.104880</identifier><identifier>PMID: 38437898</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Cryopreservation ; Heart valves ; Ice-free cryopreservation ; Inductive heating ; Magnetic nanoparticles ; Organs ; Partial heart transplantation ; Vitrification</subject><ispartof>Cryobiology, 2024-06, Vol.115, p.104880-104880, Article 104880</ispartof><rights>2024 Society for Cryobiology</rights><rights>Copyright © 2024 Society for Cryobiology. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c315t-4b3fa16cf6fa9accb55eb7cdd9420bb292ccd4515e39141b9f79eca75e41e42c3</cites><orcidid>0000-0003-0980-7284 ; 0000-0002-2718-3455 ; 0000-0002-8151-4315 ; 0000-0001-9746-0764 ; 0000-0002-4006-7555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cryobiol.2024.104880$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38437898$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vogel, Andrew D.</creatorcontrib><creatorcontrib>Suk, Rebecca</creatorcontrib><creatorcontrib>Haran, Christa</creatorcontrib><creatorcontrib>Dickinson, Patrick G.</creatorcontrib><creatorcontrib>Helke, Kristi L.</creatorcontrib><creatorcontrib>Hassid, Marc</creatorcontrib><creatorcontrib>Fitzgerald, David C.</creatorcontrib><creatorcontrib>Turek, Joseph W.</creatorcontrib><creatorcontrib>Brockbank, Kelvin G.M.</creatorcontrib><creatorcontrib>Rajab, Taufiek Konrad</creatorcontrib><title>The impact of heart valve and partial heart transplant models on the development of banking methods for tissues and organs: A concise review</title><title>Cryobiology</title><addtitle>Cryobiology</addtitle><description>Cryopreserved human heart valves fill a crucial role in the treatment for congenital cardiac anomalies, since the use of alternative mechanical and xenogeneic tissue valves have historically been limited in babies. Heart valve models have been used since 1998 to better understand the impact of cryopreservation variables on the heart valve tissue components with the ultimate goals of improving cryopreserved tissue outcomes and potentially extrapolating results with tissues to organs. Cryopreservation traditionally relies on conventional freezing, employing cryoprotective agents, and slow cooling to sub-zero centigrade temperatures; but it is plagued by the formation of ice crystals and cell damage upon thawing. Researchers have identified ice-free vitrification procedures and developed a new rapid warming method termed nanowarming. Nanowarming is an emerging method that utilizes targeted application of energy at the nanoscale level to rapidly rewarm vitrified tissues, such as heart valves, uniformly for transplantation. Vitrification and nanowarming methods hold great promise for surgery, enabling the storage and transplantation of tissues for various applications, including tissue repair and replacement. These innovations have the potential to revolutionize complex tissue and organ transplantation, including partial heart transplantation. Banking these grafts addresses organ scarcity by extending preservation duration while preserving biological activity with maintenance of structural fidelity. While ice-free vitrification and nanowarming show remarkable potential, they are still in early development. Further interdisciplinary research must be dedicated to exploring the remaining challenges that include scalability, optimizing cryoprotectant solutions, and ensuring long-term viability upon rewarming in vitro and in vivo.</description><subject>Cryopreservation</subject><subject>Heart valves</subject><subject>Ice-free cryopreservation</subject><subject>Inductive heating</subject><subject>Magnetic nanoparticles</subject><subject>Organs</subject><subject>Partial heart transplantation</subject><subject>Vitrification</subject><issn>0011-2240</issn><issn>1090-2392</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkcluFDEQhi0EIkOSV4h85NKDt17MiSgKixSJSzhbXqozHrrtxvZMlHfIQ-PJTLhyKlXpr6-WH6ErStaU0O7Tdm3TUzQ-TmtGmKhFMQzkDVpRIknDuGRv0YoQShvGBDlDH3LeEkK6nov36IwPgveDHFbo-X4D2M-LtgXHEW9Ap4L3etoD1sHhpaZeT6d6STrkZdKh4Dk6mDKOAZcKcLCHKS4zhBeK0eG3Dw94hrKJLuMxJlx8zjvIL9SYHiroM77GNgbrM-AEew-PF-jdqKcMl6d4jn59vb2_-d7c_fz24-b6rrGctqURho-adnbsRi21taZtwfTWOSkYMYZJZq0TLW2BSyqokWMvweq-BUFBMMvP0ccjd0nxT12qqNlnC1O9DOIuKyZ53xPW9V2VdkepTTHnBKNakp91elKUqIMTaqtenVAHJ9TRidp4dZqxMzO4f22vr6-CL0dB_ePh-qSy9RAsOJ_AFuWi_9-Mv9bmoNo</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Vogel, Andrew D.</creator><creator>Suk, Rebecca</creator><creator>Haran, Christa</creator><creator>Dickinson, Patrick G.</creator><creator>Helke, Kristi L.</creator><creator>Hassid, Marc</creator><creator>Fitzgerald, David C.</creator><creator>Turek, Joseph W.</creator><creator>Brockbank, Kelvin G.M.</creator><creator>Rajab, Taufiek Konrad</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0980-7284</orcidid><orcidid>https://orcid.org/0000-0002-2718-3455</orcidid><orcidid>https://orcid.org/0000-0002-8151-4315</orcidid><orcidid>https://orcid.org/0000-0001-9746-0764</orcidid><orcidid>https://orcid.org/0000-0002-4006-7555</orcidid></search><sort><creationdate>20240601</creationdate><title>The impact of heart valve and partial heart transplant models on the development of banking methods for tissues and organs: A concise review</title><author>Vogel, Andrew D. ; Suk, Rebecca ; Haran, Christa ; Dickinson, Patrick G. ; Helke, Kristi L. ; Hassid, Marc ; Fitzgerald, David C. ; Turek, Joseph W. ; Brockbank, Kelvin G.M. ; Rajab, Taufiek Konrad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-4b3fa16cf6fa9accb55eb7cdd9420bb292ccd4515e39141b9f79eca75e41e42c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cryopreservation</topic><topic>Heart valves</topic><topic>Ice-free cryopreservation</topic><topic>Inductive heating</topic><topic>Magnetic nanoparticles</topic><topic>Organs</topic><topic>Partial heart transplantation</topic><topic>Vitrification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vogel, Andrew D.</creatorcontrib><creatorcontrib>Suk, Rebecca</creatorcontrib><creatorcontrib>Haran, Christa</creatorcontrib><creatorcontrib>Dickinson, Patrick G.</creatorcontrib><creatorcontrib>Helke, Kristi L.</creatorcontrib><creatorcontrib>Hassid, Marc</creatorcontrib><creatorcontrib>Fitzgerald, David C.</creatorcontrib><creatorcontrib>Turek, Joseph W.</creatorcontrib><creatorcontrib>Brockbank, Kelvin G.M.</creatorcontrib><creatorcontrib>Rajab, Taufiek Konrad</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cryobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vogel, Andrew D.</au><au>Suk, Rebecca</au><au>Haran, Christa</au><au>Dickinson, Patrick G.</au><au>Helke, Kristi L.</au><au>Hassid, Marc</au><au>Fitzgerald, David C.</au><au>Turek, Joseph W.</au><au>Brockbank, Kelvin G.M.</au><au>Rajab, Taufiek Konrad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The impact of heart valve and partial heart transplant models on the development of banking methods for tissues and organs: A concise review</atitle><jtitle>Cryobiology</jtitle><addtitle>Cryobiology</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>115</volume><spage>104880</spage><epage>104880</epage><pages>104880-104880</pages><artnum>104880</artnum><issn>0011-2240</issn><eissn>1090-2392</eissn><abstract>Cryopreserved human heart valves fill a crucial role in the treatment for congenital cardiac anomalies, since the use of alternative mechanical and xenogeneic tissue valves have historically been limited in babies. Heart valve models have been used since 1998 to better understand the impact of cryopreservation variables on the heart valve tissue components with the ultimate goals of improving cryopreserved tissue outcomes and potentially extrapolating results with tissues to organs. Cryopreservation traditionally relies on conventional freezing, employing cryoprotective agents, and slow cooling to sub-zero centigrade temperatures; but it is plagued by the formation of ice crystals and cell damage upon thawing. Researchers have identified ice-free vitrification procedures and developed a new rapid warming method termed nanowarming. Nanowarming is an emerging method that utilizes targeted application of energy at the nanoscale level to rapidly rewarm vitrified tissues, such as heart valves, uniformly for transplantation. Vitrification and nanowarming methods hold great promise for surgery, enabling the storage and transplantation of tissues for various applications, including tissue repair and replacement. These innovations have the potential to revolutionize complex tissue and organ transplantation, including partial heart transplantation. Banking these grafts addresses organ scarcity by extending preservation duration while preserving biological activity with maintenance of structural fidelity. While ice-free vitrification and nanowarming show remarkable potential, they are still in early development. Further interdisciplinary research must be dedicated to exploring the remaining challenges that include scalability, optimizing cryoprotectant solutions, and ensuring long-term viability upon rewarming in vitro and in vivo.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>38437898</pmid><doi>10.1016/j.cryobiol.2024.104880</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0980-7284</orcidid><orcidid>https://orcid.org/0000-0002-2718-3455</orcidid><orcidid>https://orcid.org/0000-0002-8151-4315</orcidid><orcidid>https://orcid.org/0000-0001-9746-0764</orcidid><orcidid>https://orcid.org/0000-0002-4006-7555</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-2240 |
ispartof | Cryobiology, 2024-06, Vol.115, p.104880-104880, Article 104880 |
issn | 0011-2240 1090-2392 |
language | eng |
recordid | cdi_proquest_miscellaneous_2937702676 |
source | Elsevier ScienceDirect Journals |
subjects | Cryopreservation Heart valves Ice-free cryopreservation Inductive heating Magnetic nanoparticles Organs Partial heart transplantation Vitrification |
title | The impact of heart valve and partial heart transplant models on the development of banking methods for tissues and organs: A concise review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A29%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20impact%20of%20heart%20valve%20and%20partial%20heart%20transplant%20models%20on%20the%20development%20of%20banking%20methods%20for%20tissues%20and%20organs:%20A%20concise%20review&rft.jtitle=Cryobiology&rft.au=Vogel,%20Andrew%20D.&rft.date=2024-06-01&rft.volume=115&rft.spage=104880&rft.epage=104880&rft.pages=104880-104880&rft.artnum=104880&rft.issn=0011-2240&rft.eissn=1090-2392&rft_id=info:doi/10.1016/j.cryobiol.2024.104880&rft_dat=%3Cproquest_cross%3E2937702676%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2937702676&rft_id=info:pmid/38437898&rft_els_id=S001122402400035X&rfr_iscdi=true |