Machine Learning-Based Virtual Screening of Antibacterial Agents against Methicillin-Susceptible and Resistant Staphylococcus aureus
The application of computer-aided drug discovery (CADD) approaches has enabled the discovery of new antimicrobial therapeutic agents in the past. The high prevalence of methicillin-resistantStaphylococcus aureus(MRSA) strains promoted this pathogen to a high-priority pathogen for drug development....
Gespeichert in:
Veröffentlicht in: | Journal of chemical information and modeling 2024-03, Vol.64 (6), p.1932-1944 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1944 |
---|---|
container_issue | 6 |
container_start_page | 1932 |
container_title | Journal of chemical information and modeling |
container_volume | 64 |
creator | Fernandes, Philipe Oliveira Dias, Anna Letícia Teotonio dos Santos Júnior, Valtair Severino Sá Magalhães Serafim, Mateus Sousa, Yamara Viana Monteiro, Gustavo Claro Coutinho, Isabel Duarte Valli, Marilia Verzola, Marina Mol Sena Andrade Ottoni, Flaviano Melo Pádua, Rodrigo Maia de Oda, Fernando Bombarda dos Santos, André Gonzaga Andricopulo, Adriano Defini da Silva Bolzani, Vanderlan Mota, Bruno Eduardo Fernandes Alves, Ricardo José de Oliveira, Renata Barbosa Kronenberger, Thales Maltarollo, Vinícius Gonçalves |
description | The application of computer-aided drug discovery (CADD) approaches has enabled the discovery of new antimicrobial therapeutic agents in the past. The high prevalence of methicillin-resistantStaphylococcus aureus(MRSA) strains promoted this pathogen to a high-priority pathogen for drug development. In this sense, modern CADD techniques can be valuable tools for the search for new antimicrobial agents. We employed a combination of a series of machine learning (ML) techniques to select and evaluate potential compounds with antibacterial activity against methicillin-susceptible S. aureus (MSSA) and MRSA strains. In the present study, we describe the antibacterial activity of six compounds against MSSA and MRSA reference (American Type Culture Collection (ATCC)) strains as well as two clinical strains of MRSA. These compounds showed minimal inhibitory concentrations (MIC) in the range from 12.5 to 200 μM against the different bacterial strains evaluated. Our results constitute relevant proven ML-workflow models to distinctively screen for novel MRSA antibiotics. |
doi_str_mv | 10.1021/acs.jcim.4c00087 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2937701896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937701896</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-330ba6842a4f0cbefd39d7ef4238d8c2fc164fa1a747493dfd1c6a0725c213ec3</originalsourceid><addsrcrecordid>eNp1kTuPEzEURi0EYpeFngpZoqFggj127HEZVrykrJAIILrRjec6cTTxBD-K7fnhOCShQKKyZZ_vu1c6hDznbMZZy9-ATbOd9fuZtIyxTj8g13wuTWMU-_Hwcp8bdUWepLRjTAij2sfkSnRS6Dnj1-TXHditD0iXCDH4sGneQsKBfvcxFxjpykbE4zudHF2E7NdgM0ZfvxYbDDlR2IAPKdM7zFtv_Tj60KxKsnio8IgUwkC_YPIpQ8h0leGwvR8nO1lbarhELOkpeeRgTPjsfN6Qb-_ffb392Cw_f_h0u1g2IJTMjRBsDaqTLUjH7BrdIMyg0clWdENnW2e5kg44aKmlEYMbuFXAdDu3LRdoxQ15deo9xOlnwZT7va-LjiMEnErqWyO0ZrwzqqIv_0F3U4mhblepTnFtNJeVYifKximliK4_RL-HeN9z1h8N9dVQfzTUnw3VyItzcVnvcfgbuCipwOsT8Cd6Gfrfvt8n7p9S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2986179714</pqid></control><display><type>article</type><title>Machine Learning-Based Virtual Screening of Antibacterial Agents against Methicillin-Susceptible and Resistant Staphylococcus aureus</title><source>MEDLINE</source><source>ACS Publications</source><creator>Fernandes, Philipe Oliveira ; Dias, Anna Letícia Teotonio ; dos Santos Júnior, Valtair Severino ; Sá Magalhães Serafim, Mateus ; Sousa, Yamara Viana ; Monteiro, Gustavo Claro ; Coutinho, Isabel Duarte ; Valli, Marilia ; Verzola, Marina Mol Sena Andrade ; Ottoni, Flaviano Melo ; Pádua, Rodrigo Maia de ; Oda, Fernando Bombarda ; dos Santos, André Gonzaga ; Andricopulo, Adriano Defini ; da Silva Bolzani, Vanderlan ; Mota, Bruno Eduardo Fernandes ; Alves, Ricardo José ; de Oliveira, Renata Barbosa ; Kronenberger, Thales ; Maltarollo, Vinícius Gonçalves</creator><creatorcontrib>Fernandes, Philipe Oliveira ; Dias, Anna Letícia Teotonio ; dos Santos Júnior, Valtair Severino ; Sá Magalhães Serafim, Mateus ; Sousa, Yamara Viana ; Monteiro, Gustavo Claro ; Coutinho, Isabel Duarte ; Valli, Marilia ; Verzola, Marina Mol Sena Andrade ; Ottoni, Flaviano Melo ; Pádua, Rodrigo Maia de ; Oda, Fernando Bombarda ; dos Santos, André Gonzaga ; Andricopulo, Adriano Defini ; da Silva Bolzani, Vanderlan ; Mota, Bruno Eduardo Fernandes ; Alves, Ricardo José ; de Oliveira, Renata Barbosa ; Kronenberger, Thales ; Maltarollo, Vinícius Gonçalves</creatorcontrib><description>The application of computer-aided drug discovery (CADD) approaches has enabled the discovery of new antimicrobial therapeutic agents in the past. The high prevalence of methicillin-resistantStaphylococcus aureus(MRSA) strains promoted this pathogen to a high-priority pathogen for drug development. In this sense, modern CADD techniques can be valuable tools for the search for new antimicrobial agents. We employed a combination of a series of machine learning (ML) techniques to select and evaluate potential compounds with antibacterial activity against methicillin-susceptible S. aureus (MSSA) and MRSA strains. In the present study, we describe the antibacterial activity of six compounds against MSSA and MRSA reference (American Type Culture Collection (ATCC)) strains as well as two clinical strains of MRSA. These compounds showed minimal inhibitory concentrations (MIC) in the range from 12.5 to 200 μM against the different bacterial strains evaluated. Our results constitute relevant proven ML-workflow models to distinctively screen for novel MRSA antibiotics.</description><identifier>ISSN: 1549-9596</identifier><identifier>ISSN: 1549-960X</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.4c00087</identifier><identifier>PMID: 38437501</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anti-Bacterial Agents - pharmacology ; Machine learning ; Machine Learning and Deep Learning ; Methicillin - pharmacology ; Methicillin-Resistant Staphylococcus aureus ; Microbial Sensitivity Tests ; Pathogens ; Pharmacology ; Staphylococcus aureus ; Workflow</subject><ispartof>Journal of chemical information and modeling, 2024-03, Vol.64 (6), p.1932-1944</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Mar 25, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-330ba6842a4f0cbefd39d7ef4238d8c2fc164fa1a747493dfd1c6a0725c213ec3</citedby><cites>FETCH-LOGICAL-a364t-330ba6842a4f0cbefd39d7ef4238d8c2fc164fa1a747493dfd1c6a0725c213ec3</cites><orcidid>0000-0001-9675-5907 ; 0000-0002-4291-8624 ; 0000-0003-1106-183X ; 0000-0002-0457-818X ; 0000-0001-5884-2567 ; 0000-0002-7795-6129 ; 0000-0001-6933-7590 ; 0000-0001-7217-0840 ; 0000-0001-8089-2958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.4c00087$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.4c00087$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38437501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandes, Philipe Oliveira</creatorcontrib><creatorcontrib>Dias, Anna Letícia Teotonio</creatorcontrib><creatorcontrib>dos Santos Júnior, Valtair Severino</creatorcontrib><creatorcontrib>Sá Magalhães Serafim, Mateus</creatorcontrib><creatorcontrib>Sousa, Yamara Viana</creatorcontrib><creatorcontrib>Monteiro, Gustavo Claro</creatorcontrib><creatorcontrib>Coutinho, Isabel Duarte</creatorcontrib><creatorcontrib>Valli, Marilia</creatorcontrib><creatorcontrib>Verzola, Marina Mol Sena Andrade</creatorcontrib><creatorcontrib>Ottoni, Flaviano Melo</creatorcontrib><creatorcontrib>Pádua, Rodrigo Maia de</creatorcontrib><creatorcontrib>Oda, Fernando Bombarda</creatorcontrib><creatorcontrib>dos Santos, André Gonzaga</creatorcontrib><creatorcontrib>Andricopulo, Adriano Defini</creatorcontrib><creatorcontrib>da Silva Bolzani, Vanderlan</creatorcontrib><creatorcontrib>Mota, Bruno Eduardo Fernandes</creatorcontrib><creatorcontrib>Alves, Ricardo José</creatorcontrib><creatorcontrib>de Oliveira, Renata Barbosa</creatorcontrib><creatorcontrib>Kronenberger, Thales</creatorcontrib><creatorcontrib>Maltarollo, Vinícius Gonçalves</creatorcontrib><title>Machine Learning-Based Virtual Screening of Antibacterial Agents against Methicillin-Susceptible and Resistant Staphylococcus aureus</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>The application of computer-aided drug discovery (CADD) approaches has enabled the discovery of new antimicrobial therapeutic agents in the past. The high prevalence of methicillin-resistantStaphylococcus aureus(MRSA) strains promoted this pathogen to a high-priority pathogen for drug development. In this sense, modern CADD techniques can be valuable tools for the search for new antimicrobial agents. We employed a combination of a series of machine learning (ML) techniques to select and evaluate potential compounds with antibacterial activity against methicillin-susceptible S. aureus (MSSA) and MRSA strains. In the present study, we describe the antibacterial activity of six compounds against MSSA and MRSA reference (American Type Culture Collection (ATCC)) strains as well as two clinical strains of MRSA. These compounds showed minimal inhibitory concentrations (MIC) in the range from 12.5 to 200 μM against the different bacterial strains evaluated. Our results constitute relevant proven ML-workflow models to distinctively screen for novel MRSA antibiotics.</description><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Machine learning</subject><subject>Machine Learning and Deep Learning</subject><subject>Methicillin - pharmacology</subject><subject>Methicillin-Resistant Staphylococcus aureus</subject><subject>Microbial Sensitivity Tests</subject><subject>Pathogens</subject><subject>Pharmacology</subject><subject>Staphylococcus aureus</subject><subject>Workflow</subject><issn>1549-9596</issn><issn>1549-960X</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kTuPEzEURi0EYpeFngpZoqFggj127HEZVrykrJAIILrRjec6cTTxBD-K7fnhOCShQKKyZZ_vu1c6hDznbMZZy9-ATbOd9fuZtIyxTj8g13wuTWMU-_Hwcp8bdUWepLRjTAij2sfkSnRS6Dnj1-TXHditD0iXCDH4sGneQsKBfvcxFxjpykbE4zudHF2E7NdgM0ZfvxYbDDlR2IAPKdM7zFtv_Tj60KxKsnio8IgUwkC_YPIpQ8h0leGwvR8nO1lbarhELOkpeeRgTPjsfN6Qb-_ffb392Cw_f_h0u1g2IJTMjRBsDaqTLUjH7BrdIMyg0clWdENnW2e5kg44aKmlEYMbuFXAdDu3LRdoxQ15deo9xOlnwZT7va-LjiMEnErqWyO0ZrwzqqIv_0F3U4mhblepTnFtNJeVYifKximliK4_RL-HeN9z1h8N9dVQfzTUnw3VyItzcVnvcfgbuCipwOsT8Cd6Gfrfvt8n7p9S</recordid><startdate>20240325</startdate><enddate>20240325</enddate><creator>Fernandes, Philipe Oliveira</creator><creator>Dias, Anna Letícia Teotonio</creator><creator>dos Santos Júnior, Valtair Severino</creator><creator>Sá Magalhães Serafim, Mateus</creator><creator>Sousa, Yamara Viana</creator><creator>Monteiro, Gustavo Claro</creator><creator>Coutinho, Isabel Duarte</creator><creator>Valli, Marilia</creator><creator>Verzola, Marina Mol Sena Andrade</creator><creator>Ottoni, Flaviano Melo</creator><creator>Pádua, Rodrigo Maia de</creator><creator>Oda, Fernando Bombarda</creator><creator>dos Santos, André Gonzaga</creator><creator>Andricopulo, Adriano Defini</creator><creator>da Silva Bolzani, Vanderlan</creator><creator>Mota, Bruno Eduardo Fernandes</creator><creator>Alves, Ricardo José</creator><creator>de Oliveira, Renata Barbosa</creator><creator>Kronenberger, Thales</creator><creator>Maltarollo, Vinícius Gonçalves</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9675-5907</orcidid><orcidid>https://orcid.org/0000-0002-4291-8624</orcidid><orcidid>https://orcid.org/0000-0003-1106-183X</orcidid><orcidid>https://orcid.org/0000-0002-0457-818X</orcidid><orcidid>https://orcid.org/0000-0001-5884-2567</orcidid><orcidid>https://orcid.org/0000-0002-7795-6129</orcidid><orcidid>https://orcid.org/0000-0001-6933-7590</orcidid><orcidid>https://orcid.org/0000-0001-7217-0840</orcidid><orcidid>https://orcid.org/0000-0001-8089-2958</orcidid></search><sort><creationdate>20240325</creationdate><title>Machine Learning-Based Virtual Screening of Antibacterial Agents against Methicillin-Susceptible and Resistant Staphylococcus aureus</title><author>Fernandes, Philipe Oliveira ; Dias, Anna Letícia Teotonio ; dos Santos Júnior, Valtair Severino ; Sá Magalhães Serafim, Mateus ; Sousa, Yamara Viana ; Monteiro, Gustavo Claro ; Coutinho, Isabel Duarte ; Valli, Marilia ; Verzola, Marina Mol Sena Andrade ; Ottoni, Flaviano Melo ; Pádua, Rodrigo Maia de ; Oda, Fernando Bombarda ; dos Santos, André Gonzaga ; Andricopulo, Adriano Defini ; da Silva Bolzani, Vanderlan ; Mota, Bruno Eduardo Fernandes ; Alves, Ricardo José ; de Oliveira, Renata Barbosa ; Kronenberger, Thales ; Maltarollo, Vinícius Gonçalves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-330ba6842a4f0cbefd39d7ef4238d8c2fc164fa1a747493dfd1c6a0725c213ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Machine learning</topic><topic>Machine Learning and Deep Learning</topic><topic>Methicillin - pharmacology</topic><topic>Methicillin-Resistant Staphylococcus aureus</topic><topic>Microbial Sensitivity Tests</topic><topic>Pathogens</topic><topic>Pharmacology</topic><topic>Staphylococcus aureus</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandes, Philipe Oliveira</creatorcontrib><creatorcontrib>Dias, Anna Letícia Teotonio</creatorcontrib><creatorcontrib>dos Santos Júnior, Valtair Severino</creatorcontrib><creatorcontrib>Sá Magalhães Serafim, Mateus</creatorcontrib><creatorcontrib>Sousa, Yamara Viana</creatorcontrib><creatorcontrib>Monteiro, Gustavo Claro</creatorcontrib><creatorcontrib>Coutinho, Isabel Duarte</creatorcontrib><creatorcontrib>Valli, Marilia</creatorcontrib><creatorcontrib>Verzola, Marina Mol Sena Andrade</creatorcontrib><creatorcontrib>Ottoni, Flaviano Melo</creatorcontrib><creatorcontrib>Pádua, Rodrigo Maia de</creatorcontrib><creatorcontrib>Oda, Fernando Bombarda</creatorcontrib><creatorcontrib>dos Santos, André Gonzaga</creatorcontrib><creatorcontrib>Andricopulo, Adriano Defini</creatorcontrib><creatorcontrib>da Silva Bolzani, Vanderlan</creatorcontrib><creatorcontrib>Mota, Bruno Eduardo Fernandes</creatorcontrib><creatorcontrib>Alves, Ricardo José</creatorcontrib><creatorcontrib>de Oliveira, Renata Barbosa</creatorcontrib><creatorcontrib>Kronenberger, Thales</creatorcontrib><creatorcontrib>Maltarollo, Vinícius Gonçalves</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandes, Philipe Oliveira</au><au>Dias, Anna Letícia Teotonio</au><au>dos Santos Júnior, Valtair Severino</au><au>Sá Magalhães Serafim, Mateus</au><au>Sousa, Yamara Viana</au><au>Monteiro, Gustavo Claro</au><au>Coutinho, Isabel Duarte</au><au>Valli, Marilia</au><au>Verzola, Marina Mol Sena Andrade</au><au>Ottoni, Flaviano Melo</au><au>Pádua, Rodrigo Maia de</au><au>Oda, Fernando Bombarda</au><au>dos Santos, André Gonzaga</au><au>Andricopulo, Adriano Defini</au><au>da Silva Bolzani, Vanderlan</au><au>Mota, Bruno Eduardo Fernandes</au><au>Alves, Ricardo José</au><au>de Oliveira, Renata Barbosa</au><au>Kronenberger, Thales</au><au>Maltarollo, Vinícius Gonçalves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning-Based Virtual Screening of Antibacterial Agents against Methicillin-Susceptible and Resistant Staphylococcus aureus</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2024-03-25</date><risdate>2024</risdate><volume>64</volume><issue>6</issue><spage>1932</spage><epage>1944</epage><pages>1932-1944</pages><issn>1549-9596</issn><issn>1549-960X</issn><eissn>1549-960X</eissn><abstract>The application of computer-aided drug discovery (CADD) approaches has enabled the discovery of new antimicrobial therapeutic agents in the past. The high prevalence of methicillin-resistantStaphylococcus aureus(MRSA) strains promoted this pathogen to a high-priority pathogen for drug development. In this sense, modern CADD techniques can be valuable tools for the search for new antimicrobial agents. We employed a combination of a series of machine learning (ML) techniques to select and evaluate potential compounds with antibacterial activity against methicillin-susceptible S. aureus (MSSA) and MRSA strains. In the present study, we describe the antibacterial activity of six compounds against MSSA and MRSA reference (American Type Culture Collection (ATCC)) strains as well as two clinical strains of MRSA. These compounds showed minimal inhibitory concentrations (MIC) in the range from 12.5 to 200 μM against the different bacterial strains evaluated. Our results constitute relevant proven ML-workflow models to distinctively screen for novel MRSA antibiotics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38437501</pmid><doi>10.1021/acs.jcim.4c00087</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9675-5907</orcidid><orcidid>https://orcid.org/0000-0002-4291-8624</orcidid><orcidid>https://orcid.org/0000-0003-1106-183X</orcidid><orcidid>https://orcid.org/0000-0002-0457-818X</orcidid><orcidid>https://orcid.org/0000-0001-5884-2567</orcidid><orcidid>https://orcid.org/0000-0002-7795-6129</orcidid><orcidid>https://orcid.org/0000-0001-6933-7590</orcidid><orcidid>https://orcid.org/0000-0001-7217-0840</orcidid><orcidid>https://orcid.org/0000-0001-8089-2958</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-9596 |
ispartof | Journal of chemical information and modeling, 2024-03, Vol.64 (6), p.1932-1944 |
issn | 1549-9596 1549-960X 1549-960X |
language | eng |
recordid | cdi_proquest_miscellaneous_2937701896 |
source | MEDLINE; ACS Publications |
subjects | Anti-Bacterial Agents - pharmacology Machine learning Machine Learning and Deep Learning Methicillin - pharmacology Methicillin-Resistant Staphylococcus aureus Microbial Sensitivity Tests Pathogens Pharmacology Staphylococcus aureus Workflow |
title | Machine Learning-Based Virtual Screening of Antibacterial Agents against Methicillin-Susceptible and Resistant Staphylococcus aureus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning-Based%20Virtual%20Screening%20of%20Antibacterial%20Agents%20against%20Methicillin-Susceptible%20and%20Resistant%20Staphylococcus%20aureus&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Fernandes,%20Philipe%20Oliveira&rft.date=2024-03-25&rft.volume=64&rft.issue=6&rft.spage=1932&rft.epage=1944&rft.pages=1932-1944&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.4c00087&rft_dat=%3Cproquest_cross%3E2937701896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2986179714&rft_id=info:pmid/38437501&rfr_iscdi=true |