Machine Learning-Based Virtual Screening of Antibacterial Agents against Methicillin-Susceptible and Resistant Staphylococcus aureus

The application of computer-aided drug discovery (CADD) approaches has enabled the discovery of new antimicrobial therapeutic agents in the past. The high prevalence of methicillin-resistantStaphylococcus aureus­(MRSA) strains promoted this pathogen to a high-priority pathogen for drug development....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical information and modeling 2024-03, Vol.64 (6), p.1932-1944
Hauptverfasser: Fernandes, Philipe Oliveira, Dias, Anna Letícia Teotonio, dos Santos Júnior, Valtair Severino, Sá Magalhães Serafim, Mateus, Sousa, Yamara Viana, Monteiro, Gustavo Claro, Coutinho, Isabel Duarte, Valli, Marilia, Verzola, Marina Mol Sena Andrade, Ottoni, Flaviano Melo, Pádua, Rodrigo Maia de, Oda, Fernando Bombarda, dos Santos, André Gonzaga, Andricopulo, Adriano Defini, da Silva Bolzani, Vanderlan, Mota, Bruno Eduardo Fernandes, Alves, Ricardo José, de Oliveira, Renata Barbosa, Kronenberger, Thales, Maltarollo, Vinícius Gonçalves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1944
container_issue 6
container_start_page 1932
container_title Journal of chemical information and modeling
container_volume 64
creator Fernandes, Philipe Oliveira
Dias, Anna Letícia Teotonio
dos Santos Júnior, Valtair Severino
Sá Magalhães Serafim, Mateus
Sousa, Yamara Viana
Monteiro, Gustavo Claro
Coutinho, Isabel Duarte
Valli, Marilia
Verzola, Marina Mol Sena Andrade
Ottoni, Flaviano Melo
Pádua, Rodrigo Maia de
Oda, Fernando Bombarda
dos Santos, André Gonzaga
Andricopulo, Adriano Defini
da Silva Bolzani, Vanderlan
Mota, Bruno Eduardo Fernandes
Alves, Ricardo José
de Oliveira, Renata Barbosa
Kronenberger, Thales
Maltarollo, Vinícius Gonçalves
description The application of computer-aided drug discovery (CADD) approaches has enabled the discovery of new antimicrobial therapeutic agents in the past. The high prevalence of methicillin-resistantStaphylococcus aureus­(MRSA) strains promoted this pathogen to a high-priority pathogen for drug development. In this sense, modern CADD techniques can be valuable tools for the search for new antimicrobial agents. We employed a combination of a series of machine learning (ML) techniques to select and evaluate potential compounds with antibacterial activity against methicillin-susceptible S. aureus (MSSA) and MRSA strains. In the present study, we describe the antibacterial activity of six compounds against MSSA and MRSA reference (American Type Culture Collection (ATCC)) strains as well as two clinical strains of MRSA. These compounds showed minimal inhibitory concentrations (MIC) in the range from 12.5 to 200 μM against the different bacterial strains evaluated. Our results constitute relevant proven ML-workflow models to distinctively screen for novel MRSA antibiotics.
doi_str_mv 10.1021/acs.jcim.4c00087
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2937701896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2937701896</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-330ba6842a4f0cbefd39d7ef4238d8c2fc164fa1a747493dfd1c6a0725c213ec3</originalsourceid><addsrcrecordid>eNp1kTuPEzEURi0EYpeFngpZoqFggj127HEZVrykrJAIILrRjec6cTTxBD-K7fnhOCShQKKyZZ_vu1c6hDznbMZZy9-ATbOd9fuZtIyxTj8g13wuTWMU-_Hwcp8bdUWepLRjTAij2sfkSnRS6Dnj1-TXHditD0iXCDH4sGneQsKBfvcxFxjpykbE4zudHF2E7NdgM0ZfvxYbDDlR2IAPKdM7zFtv_Tj60KxKsnio8IgUwkC_YPIpQ8h0leGwvR8nO1lbarhELOkpeeRgTPjsfN6Qb-_ffb392Cw_f_h0u1g2IJTMjRBsDaqTLUjH7BrdIMyg0clWdENnW2e5kg44aKmlEYMbuFXAdDu3LRdoxQ15deo9xOlnwZT7va-LjiMEnErqWyO0ZrwzqqIv_0F3U4mhblepTnFtNJeVYifKximliK4_RL-HeN9z1h8N9dVQfzTUnw3VyItzcVnvcfgbuCipwOsT8Cd6Gfrfvt8n7p9S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2986179714</pqid></control><display><type>article</type><title>Machine Learning-Based Virtual Screening of Antibacterial Agents against Methicillin-Susceptible and Resistant Staphylococcus aureus</title><source>MEDLINE</source><source>ACS Publications</source><creator>Fernandes, Philipe Oliveira ; Dias, Anna Letícia Teotonio ; dos Santos Júnior, Valtair Severino ; Sá Magalhães Serafim, Mateus ; Sousa, Yamara Viana ; Monteiro, Gustavo Claro ; Coutinho, Isabel Duarte ; Valli, Marilia ; Verzola, Marina Mol Sena Andrade ; Ottoni, Flaviano Melo ; Pádua, Rodrigo Maia de ; Oda, Fernando Bombarda ; dos Santos, André Gonzaga ; Andricopulo, Adriano Defini ; da Silva Bolzani, Vanderlan ; Mota, Bruno Eduardo Fernandes ; Alves, Ricardo José ; de Oliveira, Renata Barbosa ; Kronenberger, Thales ; Maltarollo, Vinícius Gonçalves</creator><creatorcontrib>Fernandes, Philipe Oliveira ; Dias, Anna Letícia Teotonio ; dos Santos Júnior, Valtair Severino ; Sá Magalhães Serafim, Mateus ; Sousa, Yamara Viana ; Monteiro, Gustavo Claro ; Coutinho, Isabel Duarte ; Valli, Marilia ; Verzola, Marina Mol Sena Andrade ; Ottoni, Flaviano Melo ; Pádua, Rodrigo Maia de ; Oda, Fernando Bombarda ; dos Santos, André Gonzaga ; Andricopulo, Adriano Defini ; da Silva Bolzani, Vanderlan ; Mota, Bruno Eduardo Fernandes ; Alves, Ricardo José ; de Oliveira, Renata Barbosa ; Kronenberger, Thales ; Maltarollo, Vinícius Gonçalves</creatorcontrib><description>The application of computer-aided drug discovery (CADD) approaches has enabled the discovery of new antimicrobial therapeutic agents in the past. The high prevalence of methicillin-resistantStaphylococcus aureus­(MRSA) strains promoted this pathogen to a high-priority pathogen for drug development. In this sense, modern CADD techniques can be valuable tools for the search for new antimicrobial agents. We employed a combination of a series of machine learning (ML) techniques to select and evaluate potential compounds with antibacterial activity against methicillin-susceptible S. aureus (MSSA) and MRSA strains. In the present study, we describe the antibacterial activity of six compounds against MSSA and MRSA reference (American Type Culture Collection (ATCC)) strains as well as two clinical strains of MRSA. These compounds showed minimal inhibitory concentrations (MIC) in the range from 12.5 to 200 μM against the different bacterial strains evaluated. Our results constitute relevant proven ML-workflow models to distinctively screen for novel MRSA antibiotics.</description><identifier>ISSN: 1549-9596</identifier><identifier>ISSN: 1549-960X</identifier><identifier>EISSN: 1549-960X</identifier><identifier>DOI: 10.1021/acs.jcim.4c00087</identifier><identifier>PMID: 38437501</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anti-Bacterial Agents - pharmacology ; Machine learning ; Machine Learning and Deep Learning ; Methicillin - pharmacology ; Methicillin-Resistant Staphylococcus aureus ; Microbial Sensitivity Tests ; Pathogens ; Pharmacology ; Staphylococcus aureus ; Workflow</subject><ispartof>Journal of chemical information and modeling, 2024-03, Vol.64 (6), p.1932-1944</ispartof><rights>2024 American Chemical Society</rights><rights>Copyright American Chemical Society Mar 25, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-330ba6842a4f0cbefd39d7ef4238d8c2fc164fa1a747493dfd1c6a0725c213ec3</citedby><cites>FETCH-LOGICAL-a364t-330ba6842a4f0cbefd39d7ef4238d8c2fc164fa1a747493dfd1c6a0725c213ec3</cites><orcidid>0000-0001-9675-5907 ; 0000-0002-4291-8624 ; 0000-0003-1106-183X ; 0000-0002-0457-818X ; 0000-0001-5884-2567 ; 0000-0002-7795-6129 ; 0000-0001-6933-7590 ; 0000-0001-7217-0840 ; 0000-0001-8089-2958</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jcim.4c00087$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jcim.4c00087$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38437501$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandes, Philipe Oliveira</creatorcontrib><creatorcontrib>Dias, Anna Letícia Teotonio</creatorcontrib><creatorcontrib>dos Santos Júnior, Valtair Severino</creatorcontrib><creatorcontrib>Sá Magalhães Serafim, Mateus</creatorcontrib><creatorcontrib>Sousa, Yamara Viana</creatorcontrib><creatorcontrib>Monteiro, Gustavo Claro</creatorcontrib><creatorcontrib>Coutinho, Isabel Duarte</creatorcontrib><creatorcontrib>Valli, Marilia</creatorcontrib><creatorcontrib>Verzola, Marina Mol Sena Andrade</creatorcontrib><creatorcontrib>Ottoni, Flaviano Melo</creatorcontrib><creatorcontrib>Pádua, Rodrigo Maia de</creatorcontrib><creatorcontrib>Oda, Fernando Bombarda</creatorcontrib><creatorcontrib>dos Santos, André Gonzaga</creatorcontrib><creatorcontrib>Andricopulo, Adriano Defini</creatorcontrib><creatorcontrib>da Silva Bolzani, Vanderlan</creatorcontrib><creatorcontrib>Mota, Bruno Eduardo Fernandes</creatorcontrib><creatorcontrib>Alves, Ricardo José</creatorcontrib><creatorcontrib>de Oliveira, Renata Barbosa</creatorcontrib><creatorcontrib>Kronenberger, Thales</creatorcontrib><creatorcontrib>Maltarollo, Vinícius Gonçalves</creatorcontrib><title>Machine Learning-Based Virtual Screening of Antibacterial Agents against Methicillin-Susceptible and Resistant Staphylococcus aureus</title><title>Journal of chemical information and modeling</title><addtitle>J. Chem. Inf. Model</addtitle><description>The application of computer-aided drug discovery (CADD) approaches has enabled the discovery of new antimicrobial therapeutic agents in the past. The high prevalence of methicillin-resistantStaphylococcus aureus­(MRSA) strains promoted this pathogen to a high-priority pathogen for drug development. In this sense, modern CADD techniques can be valuable tools for the search for new antimicrobial agents. We employed a combination of a series of machine learning (ML) techniques to select and evaluate potential compounds with antibacterial activity against methicillin-susceptible S. aureus (MSSA) and MRSA strains. In the present study, we describe the antibacterial activity of six compounds against MSSA and MRSA reference (American Type Culture Collection (ATCC)) strains as well as two clinical strains of MRSA. These compounds showed minimal inhibitory concentrations (MIC) in the range from 12.5 to 200 μM against the different bacterial strains evaluated. Our results constitute relevant proven ML-workflow models to distinctively screen for novel MRSA antibiotics.</description><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Machine learning</subject><subject>Machine Learning and Deep Learning</subject><subject>Methicillin - pharmacology</subject><subject>Methicillin-Resistant Staphylococcus aureus</subject><subject>Microbial Sensitivity Tests</subject><subject>Pathogens</subject><subject>Pharmacology</subject><subject>Staphylococcus aureus</subject><subject>Workflow</subject><issn>1549-9596</issn><issn>1549-960X</issn><issn>1549-960X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kTuPEzEURi0EYpeFngpZoqFggj127HEZVrykrJAIILrRjec6cTTxBD-K7fnhOCShQKKyZZ_vu1c6hDznbMZZy9-ATbOd9fuZtIyxTj8g13wuTWMU-_Hwcp8bdUWepLRjTAij2sfkSnRS6Dnj1-TXHditD0iXCDH4sGneQsKBfvcxFxjpykbE4zudHF2E7NdgM0ZfvxYbDDlR2IAPKdM7zFtv_Tj60KxKsnio8IgUwkC_YPIpQ8h0leGwvR8nO1lbarhELOkpeeRgTPjsfN6Qb-_ffb392Cw_f_h0u1g2IJTMjRBsDaqTLUjH7BrdIMyg0clWdENnW2e5kg44aKmlEYMbuFXAdDu3LRdoxQ15deo9xOlnwZT7va-LjiMEnErqWyO0ZrwzqqIv_0F3U4mhblepTnFtNJeVYifKximliK4_RL-HeN9z1h8N9dVQfzTUnw3VyItzcVnvcfgbuCipwOsT8Cd6Gfrfvt8n7p9S</recordid><startdate>20240325</startdate><enddate>20240325</enddate><creator>Fernandes, Philipe Oliveira</creator><creator>Dias, Anna Letícia Teotonio</creator><creator>dos Santos Júnior, Valtair Severino</creator><creator>Sá Magalhães Serafim, Mateus</creator><creator>Sousa, Yamara Viana</creator><creator>Monteiro, Gustavo Claro</creator><creator>Coutinho, Isabel Duarte</creator><creator>Valli, Marilia</creator><creator>Verzola, Marina Mol Sena Andrade</creator><creator>Ottoni, Flaviano Melo</creator><creator>Pádua, Rodrigo Maia de</creator><creator>Oda, Fernando Bombarda</creator><creator>dos Santos, André Gonzaga</creator><creator>Andricopulo, Adriano Defini</creator><creator>da Silva Bolzani, Vanderlan</creator><creator>Mota, Bruno Eduardo Fernandes</creator><creator>Alves, Ricardo José</creator><creator>de Oliveira, Renata Barbosa</creator><creator>Kronenberger, Thales</creator><creator>Maltarollo, Vinícius Gonçalves</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9675-5907</orcidid><orcidid>https://orcid.org/0000-0002-4291-8624</orcidid><orcidid>https://orcid.org/0000-0003-1106-183X</orcidid><orcidid>https://orcid.org/0000-0002-0457-818X</orcidid><orcidid>https://orcid.org/0000-0001-5884-2567</orcidid><orcidid>https://orcid.org/0000-0002-7795-6129</orcidid><orcidid>https://orcid.org/0000-0001-6933-7590</orcidid><orcidid>https://orcid.org/0000-0001-7217-0840</orcidid><orcidid>https://orcid.org/0000-0001-8089-2958</orcidid></search><sort><creationdate>20240325</creationdate><title>Machine Learning-Based Virtual Screening of Antibacterial Agents against Methicillin-Susceptible and Resistant Staphylococcus aureus</title><author>Fernandes, Philipe Oliveira ; Dias, Anna Letícia Teotonio ; dos Santos Júnior, Valtair Severino ; Sá Magalhães Serafim, Mateus ; Sousa, Yamara Viana ; Monteiro, Gustavo Claro ; Coutinho, Isabel Duarte ; Valli, Marilia ; Verzola, Marina Mol Sena Andrade ; Ottoni, Flaviano Melo ; Pádua, Rodrigo Maia de ; Oda, Fernando Bombarda ; dos Santos, André Gonzaga ; Andricopulo, Adriano Defini ; da Silva Bolzani, Vanderlan ; Mota, Bruno Eduardo Fernandes ; Alves, Ricardo José ; de Oliveira, Renata Barbosa ; Kronenberger, Thales ; Maltarollo, Vinícius Gonçalves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-330ba6842a4f0cbefd39d7ef4238d8c2fc164fa1a747493dfd1c6a0725c213ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Machine learning</topic><topic>Machine Learning and Deep Learning</topic><topic>Methicillin - pharmacology</topic><topic>Methicillin-Resistant Staphylococcus aureus</topic><topic>Microbial Sensitivity Tests</topic><topic>Pathogens</topic><topic>Pharmacology</topic><topic>Staphylococcus aureus</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandes, Philipe Oliveira</creatorcontrib><creatorcontrib>Dias, Anna Letícia Teotonio</creatorcontrib><creatorcontrib>dos Santos Júnior, Valtair Severino</creatorcontrib><creatorcontrib>Sá Magalhães Serafim, Mateus</creatorcontrib><creatorcontrib>Sousa, Yamara Viana</creatorcontrib><creatorcontrib>Monteiro, Gustavo Claro</creatorcontrib><creatorcontrib>Coutinho, Isabel Duarte</creatorcontrib><creatorcontrib>Valli, Marilia</creatorcontrib><creatorcontrib>Verzola, Marina Mol Sena Andrade</creatorcontrib><creatorcontrib>Ottoni, Flaviano Melo</creatorcontrib><creatorcontrib>Pádua, Rodrigo Maia de</creatorcontrib><creatorcontrib>Oda, Fernando Bombarda</creatorcontrib><creatorcontrib>dos Santos, André Gonzaga</creatorcontrib><creatorcontrib>Andricopulo, Adriano Defini</creatorcontrib><creatorcontrib>da Silva Bolzani, Vanderlan</creatorcontrib><creatorcontrib>Mota, Bruno Eduardo Fernandes</creatorcontrib><creatorcontrib>Alves, Ricardo José</creatorcontrib><creatorcontrib>de Oliveira, Renata Barbosa</creatorcontrib><creatorcontrib>Kronenberger, Thales</creatorcontrib><creatorcontrib>Maltarollo, Vinícius Gonçalves</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of chemical information and modeling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandes, Philipe Oliveira</au><au>Dias, Anna Letícia Teotonio</au><au>dos Santos Júnior, Valtair Severino</au><au>Sá Magalhães Serafim, Mateus</au><au>Sousa, Yamara Viana</au><au>Monteiro, Gustavo Claro</au><au>Coutinho, Isabel Duarte</au><au>Valli, Marilia</au><au>Verzola, Marina Mol Sena Andrade</au><au>Ottoni, Flaviano Melo</au><au>Pádua, Rodrigo Maia de</au><au>Oda, Fernando Bombarda</au><au>dos Santos, André Gonzaga</au><au>Andricopulo, Adriano Defini</au><au>da Silva Bolzani, Vanderlan</au><au>Mota, Bruno Eduardo Fernandes</au><au>Alves, Ricardo José</au><au>de Oliveira, Renata Barbosa</au><au>Kronenberger, Thales</au><au>Maltarollo, Vinícius Gonçalves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning-Based Virtual Screening of Antibacterial Agents against Methicillin-Susceptible and Resistant Staphylococcus aureus</atitle><jtitle>Journal of chemical information and modeling</jtitle><addtitle>J. Chem. Inf. Model</addtitle><date>2024-03-25</date><risdate>2024</risdate><volume>64</volume><issue>6</issue><spage>1932</spage><epage>1944</epage><pages>1932-1944</pages><issn>1549-9596</issn><issn>1549-960X</issn><eissn>1549-960X</eissn><abstract>The application of computer-aided drug discovery (CADD) approaches has enabled the discovery of new antimicrobial therapeutic agents in the past. The high prevalence of methicillin-resistantStaphylococcus aureus­(MRSA) strains promoted this pathogen to a high-priority pathogen for drug development. In this sense, modern CADD techniques can be valuable tools for the search for new antimicrobial agents. We employed a combination of a series of machine learning (ML) techniques to select and evaluate potential compounds with antibacterial activity against methicillin-susceptible S. aureus (MSSA) and MRSA strains. In the present study, we describe the antibacterial activity of six compounds against MSSA and MRSA reference (American Type Culture Collection (ATCC)) strains as well as two clinical strains of MRSA. These compounds showed minimal inhibitory concentrations (MIC) in the range from 12.5 to 200 μM against the different bacterial strains evaluated. Our results constitute relevant proven ML-workflow models to distinctively screen for novel MRSA antibiotics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>38437501</pmid><doi>10.1021/acs.jcim.4c00087</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9675-5907</orcidid><orcidid>https://orcid.org/0000-0002-4291-8624</orcidid><orcidid>https://orcid.org/0000-0003-1106-183X</orcidid><orcidid>https://orcid.org/0000-0002-0457-818X</orcidid><orcidid>https://orcid.org/0000-0001-5884-2567</orcidid><orcidid>https://orcid.org/0000-0002-7795-6129</orcidid><orcidid>https://orcid.org/0000-0001-6933-7590</orcidid><orcidid>https://orcid.org/0000-0001-7217-0840</orcidid><orcidid>https://orcid.org/0000-0001-8089-2958</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9596
ispartof Journal of chemical information and modeling, 2024-03, Vol.64 (6), p.1932-1944
issn 1549-9596
1549-960X
1549-960X
language eng
recordid cdi_proquest_miscellaneous_2937701896
source MEDLINE; ACS Publications
subjects Anti-Bacterial Agents - pharmacology
Machine learning
Machine Learning and Deep Learning
Methicillin - pharmacology
Methicillin-Resistant Staphylococcus aureus
Microbial Sensitivity Tests
Pathogens
Pharmacology
Staphylococcus aureus
Workflow
title Machine Learning-Based Virtual Screening of Antibacterial Agents against Methicillin-Susceptible and Resistant Staphylococcus aureus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T04%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning-Based%20Virtual%20Screening%20of%20Antibacterial%20Agents%20against%20Methicillin-Susceptible%20and%20Resistant%20Staphylococcus%20aureus&rft.jtitle=Journal%20of%20chemical%20information%20and%20modeling&rft.au=Fernandes,%20Philipe%20Oliveira&rft.date=2024-03-25&rft.volume=64&rft.issue=6&rft.spage=1932&rft.epage=1944&rft.pages=1932-1944&rft.issn=1549-9596&rft.eissn=1549-960X&rft_id=info:doi/10.1021/acs.jcim.4c00087&rft_dat=%3Cproquest_cross%3E2937701896%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2986179714&rft_id=info:pmid/38437501&rfr_iscdi=true