Energy efficiency optimization in a parallel relay-assisted UWOC system with simultaneous lightwave information and power transfer

In this paper, we investigate the energy efficiency optimization for a parallel relay-assisted underwater wireless optical communication (UWOC) system with simultaneous lightwave information and power transfer (SLIPT) over an aggregate channel. In this system, relay nodes are equipped with energy ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied optics (2004) 2024-02, Vol.63 (4), p.999-1006
Hauptverfasser: Li, Gan, Shang, Tao, Kong, Wanqiu, Li, Qian, Tang, Tang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1006
container_issue 4
container_start_page 999
container_title Applied optics (2004)
container_volume 63
creator Li, Gan
Shang, Tao
Kong, Wanqiu
Li, Qian
Tang, Tang
description In this paper, we investigate the energy efficiency optimization for a parallel relay-assisted underwater wireless optical communication (UWOC) system with simultaneous lightwave information and power transfer (SLIPT) over an aggregate channel. In this system, relay nodes are equipped with energy harvesting devices, getting energy from the direct current component of the received signal transmitted by the source node. These nodes utilize the harvested energy to transmit the signal to the destination node with the decoding and forwarding strategy. The harvested energy for each relay node is derived by the Gauss-Laguerre quadrature formula and the outage probability is deduced by the Meijer-G function. Then, the system's energy efficiency can be calculated and an energy efficiency maximization problem is built up with respect to the bias current. We propose a three-level-iteration algorithm to solve this problem. In the first level, the Dinkelbach method is used to represent energy efficiency in a parametric subtractive form. In the second level, we use the penalty function method to convert the object function and constraint. In the third level, the objective function is transformed into a quadratic function by using a successive convex approximate method, thereby solving for the bias current. The effects of system parameters on energy efficiency are also analyzed. Theoretical results and Monte Carlo simulations suggest that employing the solved bias current can significantly improve the system's energy efficiency.
doi_str_mv 10.1364/AO.514508
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2937701792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922157571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-7fa84f48c162c8a1c923a4f45fa4cc16235289fd572ee7c077b24af83dda4b283</originalsourceid><addsrcrecordid>eNpdkU2LFDEQhoMo7jh68A9IwIseeu18TdLHYVg_YGEuLnpratKV3SzpD5O0Q3v0l5ulVw-e6qV4eCjqJeQ1qy-Z2MkP--OlYlLV5gnZcKZUJdhOPSWbEpuKcfP9grxI6b6uhZKNfk4uhJFCi0ZvyO-rAePtQtE5bz0OdqHjlH3vf0H240D9QIFOECEEDDRigKWClHzK2NGbb8cDTUvJPT37fEeT7-eQYcBxTjT427t8hp9YJG6M_SqEoaPTeMZIc4QhOYwvyTMHIeGrx7klNx-vvh4-V9fHT18O--vKci1ypR0Y6aSxbMetAWYbLqAslANpH5ZCcdO4TmmOqG2t9YlLcEZ0HcgTN2JL3q3eKY4_Zky57X2yGMJ6b8sboXXNdPFuydv_0PtxjkO5rlC8vFgrzQr1fqVsHFOK6Nop-h7i0rK6fSim3R_btZjCvnk0zqceu3_k3ybEH3SNip8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922157571</pqid></control><display><type>article</type><title>Energy efficiency optimization in a parallel relay-assisted UWOC system with simultaneous lightwave information and power transfer</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Li, Gan ; Shang, Tao ; Kong, Wanqiu ; Li, Qian ; Tang, Tang</creator><creatorcontrib>Li, Gan ; Shang, Tao ; Kong, Wanqiu ; Li, Qian ; Tang, Tang</creatorcontrib><description>In this paper, we investigate the energy efficiency optimization for a parallel relay-assisted underwater wireless optical communication (UWOC) system with simultaneous lightwave information and power transfer (SLIPT) over an aggregate channel. In this system, relay nodes are equipped with energy harvesting devices, getting energy from the direct current component of the received signal transmitted by the source node. These nodes utilize the harvested energy to transmit the signal to the destination node with the decoding and forwarding strategy. The harvested energy for each relay node is derived by the Gauss-Laguerre quadrature formula and the outage probability is deduced by the Meijer-G function. Then, the system's energy efficiency can be calculated and an energy efficiency maximization problem is built up with respect to the bias current. We propose a three-level-iteration algorithm to solve this problem. In the first level, the Dinkelbach method is used to represent energy efficiency in a parametric subtractive form. In the second level, we use the penalty function method to convert the object function and constraint. In the third level, the objective function is transformed into a quadratic function by using a successive convex approximate method, thereby solving for the bias current. The effects of system parameters on energy efficiency are also analyzed. Theoretical results and Monte Carlo simulations suggest that employing the solved bias current can significantly improve the system's energy efficiency.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.514508</identifier><identifier>PMID: 38437397</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Bias ; Direct current ; Energy efficiency ; Energy harvesting ; Iterative algorithms ; Iterative methods ; Monte Carlo simulation ; Nodes ; Optical communication ; Optimization ; Penalty function ; Power management ; Power transfer ; Quadratic equations ; Quadratures ; Relay ; Underwater communication ; Wireless communications</subject><ispartof>Applied optics (2004), 2024-02, Vol.63 (4), p.999-1006</ispartof><rights>Copyright Optical Society of America Feb 1, 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-7fa84f48c162c8a1c923a4f45fa4cc16235289fd572ee7c077b24af83dda4b283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3245,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38437397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Gan</creatorcontrib><creatorcontrib>Shang, Tao</creatorcontrib><creatorcontrib>Kong, Wanqiu</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Tang, Tang</creatorcontrib><title>Energy efficiency optimization in a parallel relay-assisted UWOC system with simultaneous lightwave information and power transfer</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>In this paper, we investigate the energy efficiency optimization for a parallel relay-assisted underwater wireless optical communication (UWOC) system with simultaneous lightwave information and power transfer (SLIPT) over an aggregate channel. In this system, relay nodes are equipped with energy harvesting devices, getting energy from the direct current component of the received signal transmitted by the source node. These nodes utilize the harvested energy to transmit the signal to the destination node with the decoding and forwarding strategy. The harvested energy for each relay node is derived by the Gauss-Laguerre quadrature formula and the outage probability is deduced by the Meijer-G function. Then, the system's energy efficiency can be calculated and an energy efficiency maximization problem is built up with respect to the bias current. We propose a three-level-iteration algorithm to solve this problem. In the first level, the Dinkelbach method is used to represent energy efficiency in a parametric subtractive form. In the second level, we use the penalty function method to convert the object function and constraint. In the third level, the objective function is transformed into a quadratic function by using a successive convex approximate method, thereby solving for the bias current. The effects of system parameters on energy efficiency are also analyzed. Theoretical results and Monte Carlo simulations suggest that employing the solved bias current can significantly improve the system's energy efficiency.</description><subject>Bias</subject><subject>Direct current</subject><subject>Energy efficiency</subject><subject>Energy harvesting</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Monte Carlo simulation</subject><subject>Nodes</subject><subject>Optical communication</subject><subject>Optimization</subject><subject>Penalty function</subject><subject>Power management</subject><subject>Power transfer</subject><subject>Quadratic equations</subject><subject>Quadratures</subject><subject>Relay</subject><subject>Underwater communication</subject><subject>Wireless communications</subject><issn>1559-128X</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkU2LFDEQhoMo7jh68A9IwIseeu18TdLHYVg_YGEuLnpratKV3SzpD5O0Q3v0l5ulVw-e6qV4eCjqJeQ1qy-Z2MkP--OlYlLV5gnZcKZUJdhOPSWbEpuKcfP9grxI6b6uhZKNfk4uhJFCi0ZvyO-rAePtQtE5bz0OdqHjlH3vf0H240D9QIFOECEEDDRigKWClHzK2NGbb8cDTUvJPT37fEeT7-eQYcBxTjT427t8hp9YJG6M_SqEoaPTeMZIc4QhOYwvyTMHIeGrx7klNx-vvh4-V9fHT18O--vKci1ypR0Y6aSxbMetAWYbLqAslANpH5ZCcdO4TmmOqG2t9YlLcEZ0HcgTN2JL3q3eKY4_Zky57X2yGMJ6b8sboXXNdPFuydv_0PtxjkO5rlC8vFgrzQr1fqVsHFOK6Nop-h7i0rK6fSim3R_btZjCvnk0zqceu3_k3ybEH3SNip8</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Li, Gan</creator><creator>Shang, Tao</creator><creator>Kong, Wanqiu</creator><creator>Li, Qian</creator><creator>Tang, Tang</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20240201</creationdate><title>Energy efficiency optimization in a parallel relay-assisted UWOC system with simultaneous lightwave information and power transfer</title><author>Li, Gan ; Shang, Tao ; Kong, Wanqiu ; Li, Qian ; Tang, Tang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-7fa84f48c162c8a1c923a4f45fa4cc16235289fd572ee7c077b24af83dda4b283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bias</topic><topic>Direct current</topic><topic>Energy efficiency</topic><topic>Energy harvesting</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Monte Carlo simulation</topic><topic>Nodes</topic><topic>Optical communication</topic><topic>Optimization</topic><topic>Penalty function</topic><topic>Power management</topic><topic>Power transfer</topic><topic>Quadratic equations</topic><topic>Quadratures</topic><topic>Relay</topic><topic>Underwater communication</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Gan</creatorcontrib><creatorcontrib>Shang, Tao</creatorcontrib><creatorcontrib>Kong, Wanqiu</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Tang, Tang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Gan</au><au>Shang, Tao</au><au>Kong, Wanqiu</au><au>Li, Qian</au><au>Tang, Tang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy efficiency optimization in a parallel relay-assisted UWOC system with simultaneous lightwave information and power transfer</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>63</volume><issue>4</issue><spage>999</spage><epage>1006</epage><pages>999-1006</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>In this paper, we investigate the energy efficiency optimization for a parallel relay-assisted underwater wireless optical communication (UWOC) system with simultaneous lightwave information and power transfer (SLIPT) over an aggregate channel. In this system, relay nodes are equipped with energy harvesting devices, getting energy from the direct current component of the received signal transmitted by the source node. These nodes utilize the harvested energy to transmit the signal to the destination node with the decoding and forwarding strategy. The harvested energy for each relay node is derived by the Gauss-Laguerre quadrature formula and the outage probability is deduced by the Meijer-G function. Then, the system's energy efficiency can be calculated and an energy efficiency maximization problem is built up with respect to the bias current. We propose a three-level-iteration algorithm to solve this problem. In the first level, the Dinkelbach method is used to represent energy efficiency in a parametric subtractive form. In the second level, we use the penalty function method to convert the object function and constraint. In the third level, the objective function is transformed into a quadratic function by using a successive convex approximate method, thereby solving for the bias current. The effects of system parameters on energy efficiency are also analyzed. Theoretical results and Monte Carlo simulations suggest that employing the solved bias current can significantly improve the system's energy efficiency.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>38437397</pmid><doi>10.1364/AO.514508</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied optics (2004), 2024-02, Vol.63 (4), p.999-1006
issn 1559-128X
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_2937701792
source Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Bias
Direct current
Energy efficiency
Energy harvesting
Iterative algorithms
Iterative methods
Monte Carlo simulation
Nodes
Optical communication
Optimization
Penalty function
Power management
Power transfer
Quadratic equations
Quadratures
Relay
Underwater communication
Wireless communications
title Energy efficiency optimization in a parallel relay-assisted UWOC system with simultaneous lightwave information and power transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T04%3A37%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20efficiency%20optimization%20in%20a%20parallel%20relay-assisted%20UWOC%20system%20with%20simultaneous%20lightwave%20information%20and%20power%20transfer&rft.jtitle=Applied%20optics%20(2004)&rft.au=Li,%20Gan&rft.date=2024-02-01&rft.volume=63&rft.issue=4&rft.spage=999&rft.epage=1006&rft.pages=999-1006&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.514508&rft_dat=%3Cproquest_cross%3E2922157571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922157571&rft_id=info:pmid/38437397&rfr_iscdi=true