Finite-temperature thermodynamic and vibrational properties of Al–Ni–Y compounds via first-principles calculations

The thermodynamic properties of ternary compounds of the Al–Ni–Y system were studied via density functional theory using the projector augmented-wave pseudopotential method, within the generalized gradient approximation. It was found that spin-polarization effects in all of the compounds are negligi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2006-05, Vol.54 (8), p.2291-2304
Hauptverfasser: Golumbfskie, W.J., Arroyave, R., Shin, D., Liu, Z.-K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2304
container_issue 8
container_start_page 2291
container_title Acta materialia
container_volume 54
creator Golumbfskie, W.J.
Arroyave, R.
Shin, D.
Liu, Z.-K.
description The thermodynamic properties of ternary compounds of the Al–Ni–Y system were studied via density functional theory using the projector augmented-wave pseudopotential method, within the generalized gradient approximation. It was found that spin-polarization effects in all of the compounds are negligible. For three of the compounds, the ground state structures were determined for the first time by minimizing their total energies with respect to all the possible atomic arrangements consistent with their published space group and prototype structure. The calculated enthalpies of formation at 0 K show a very good agreement with the available experimental results at room temperature. The finite temperature thermodynamic properties of the compounds were calculated by considering the effects of both vibrational and electronic degrees of freedom. Lattice vibration effects were calculated using the supercell method within the harmonic and quasi-harmonic approximations. The thermal electronic contributions were determined through the one-dimensional integration of the electronic density of states.
doi_str_mv 10.1016/j.actamat.2006.01.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29374306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645406000826</els_id><sourcerecordid>1082173756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-cff3abfdb93dc097064565386e06f628f57b67fc29fcd6a9744c28590f923b83</originalsourceid><addsrcrecordid>eNqFkc-KFDEQxhtRcF19BKEvipce86-T7pMsi6sLi1724imkqyuYobvTJumBve07-IY-iTXOgDeFIinIr6pS31dVrznbccb1-_3OQXGzKzvBmN4xTiGfVBe8M7IRqpVPKZdt32jVqufVi5z3jHFhFLuoDjdhCQWbgvOKyZUtYV2-Y5rj-LC4OUDtlrE-hIHeQlzcVK8pElkC5jr6-mr69fjzS6DjWw1xXuO2jJl4V_uQcmnWFBYI60Q0uAm26U-b_LJ65t2U8dX5vqzubz7eX39u7r5-ur2-umtAMVka8F66wY9DL0dgvWG0gW5lp5Fpr0XnWzNo40H0HkbteqMUiK7tme-FHDp5Wb09taVP_9gwFzuHDDhNbsG4ZSt6aZRkmsB3_wQ56wQ30rRHtD2hkGLOCb2lHWeXHgiyRz_s3p79sEc_LOMUkurenEe4TFL45EiY_LfYGGWkOHIfThySLoeAyWYIuACOISEUO8bwn0m_AX5Ip9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082173756</pqid></control><display><type>article</type><title>Finite-temperature thermodynamic and vibrational properties of Al–Ni–Y compounds via first-principles calculations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Golumbfskie, W.J. ; Arroyave, R. ; Shin, D. ; Liu, Z.-K.</creator><creatorcontrib>Golumbfskie, W.J. ; Arroyave, R. ; Shin, D. ; Liu, Z.-K.</creatorcontrib><description>The thermodynamic properties of ternary compounds of the Al–Ni–Y system were studied via density functional theory using the projector augmented-wave pseudopotential method, within the generalized gradient approximation. It was found that spin-polarization effects in all of the compounds are negligible. For three of the compounds, the ground state structures were determined for the first time by minimizing their total energies with respect to all the possible atomic arrangements consistent with their published space group and prototype structure. The calculated enthalpies of formation at 0 K show a very good agreement with the available experimental results at room temperature. The finite temperature thermodynamic properties of the compounds were calculated by considering the effects of both vibrational and electronic degrees of freedom. Lattice vibration effects were calculated using the supercell method within the harmonic and quasi-harmonic approximations. The thermal electronic contributions were determined through the one-dimensional integration of the electronic density of states.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2006.01.013</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aluminum ; Al–Ni–Y ; Applied sciences ; Approximation ; Atomic structure ; Electronics ; Exact sciences and technology ; First principles ; Ground state ; Harmonics ; Mathematical analysis ; Metals. Metallurgy ; Thermodynamic properties ; Vibrational free energy</subject><ispartof>Acta materialia, 2006-05, Vol.54 (8), p.2291-2304</ispartof><rights>2006 Acta Materialia Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-cff3abfdb93dc097064565386e06f628f57b67fc29fcd6a9744c28590f923b83</citedby><cites>FETCH-LOGICAL-c403t-cff3abfdb93dc097064565386e06f628f57b67fc29fcd6a9744c28590f923b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2006.01.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17747323$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Golumbfskie, W.J.</creatorcontrib><creatorcontrib>Arroyave, R.</creatorcontrib><creatorcontrib>Shin, D.</creatorcontrib><creatorcontrib>Liu, Z.-K.</creatorcontrib><title>Finite-temperature thermodynamic and vibrational properties of Al–Ni–Y compounds via first-principles calculations</title><title>Acta materialia</title><description>The thermodynamic properties of ternary compounds of the Al–Ni–Y system were studied via density functional theory using the projector augmented-wave pseudopotential method, within the generalized gradient approximation. It was found that spin-polarization effects in all of the compounds are negligible. For three of the compounds, the ground state structures were determined for the first time by minimizing their total energies with respect to all the possible atomic arrangements consistent with their published space group and prototype structure. The calculated enthalpies of formation at 0 K show a very good agreement with the available experimental results at room temperature. The finite temperature thermodynamic properties of the compounds were calculated by considering the effects of both vibrational and electronic degrees of freedom. Lattice vibration effects were calculated using the supercell method within the harmonic and quasi-harmonic approximations. The thermal electronic contributions were determined through the one-dimensional integration of the electronic density of states.</description><subject>Aluminum</subject><subject>Al–Ni–Y</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Atomic structure</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>First principles</subject><subject>Ground state</subject><subject>Harmonics</subject><subject>Mathematical analysis</subject><subject>Metals. Metallurgy</subject><subject>Thermodynamic properties</subject><subject>Vibrational free energy</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkc-KFDEQxhtRcF19BKEvipce86-T7pMsi6sLi1724imkqyuYobvTJumBve07-IY-iTXOgDeFIinIr6pS31dVrznbccb1-_3OQXGzKzvBmN4xTiGfVBe8M7IRqpVPKZdt32jVqufVi5z3jHFhFLuoDjdhCQWbgvOKyZUtYV2-Y5rj-LC4OUDtlrE-hIHeQlzcVK8pElkC5jr6-mr69fjzS6DjWw1xXuO2jJl4V_uQcmnWFBYI60Q0uAm26U-b_LJ65t2U8dX5vqzubz7eX39u7r5-ur2-umtAMVka8F66wY9DL0dgvWG0gW5lp5Fpr0XnWzNo40H0HkbteqMUiK7tme-FHDp5Wb09taVP_9gwFzuHDDhNbsG4ZSt6aZRkmsB3_wQ56wQ30rRHtD2hkGLOCb2lHWeXHgiyRz_s3p79sEc_LOMUkurenEe4TFL45EiY_LfYGGWkOHIfThySLoeAyWYIuACOISEUO8bwn0m_AX5Ip9M</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Golumbfskie, W.J.</creator><creator>Arroyave, R.</creator><creator>Shin, D.</creator><creator>Liu, Z.-K.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20060501</creationdate><title>Finite-temperature thermodynamic and vibrational properties of Al–Ni–Y compounds via first-principles calculations</title><author>Golumbfskie, W.J. ; Arroyave, R. ; Shin, D. ; Liu, Z.-K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-cff3abfdb93dc097064565386e06f628f57b67fc29fcd6a9744c28590f923b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aluminum</topic><topic>Al–Ni–Y</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Atomic structure</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>First principles</topic><topic>Ground state</topic><topic>Harmonics</topic><topic>Mathematical analysis</topic><topic>Metals. Metallurgy</topic><topic>Thermodynamic properties</topic><topic>Vibrational free energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golumbfskie, W.J.</creatorcontrib><creatorcontrib>Arroyave, R.</creatorcontrib><creatorcontrib>Shin, D.</creatorcontrib><creatorcontrib>Liu, Z.-K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golumbfskie, W.J.</au><au>Arroyave, R.</au><au>Shin, D.</au><au>Liu, Z.-K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-temperature thermodynamic and vibrational properties of Al–Ni–Y compounds via first-principles calculations</atitle><jtitle>Acta materialia</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>54</volume><issue>8</issue><spage>2291</spage><epage>2304</epage><pages>2291-2304</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The thermodynamic properties of ternary compounds of the Al–Ni–Y system were studied via density functional theory using the projector augmented-wave pseudopotential method, within the generalized gradient approximation. It was found that spin-polarization effects in all of the compounds are negligible. For three of the compounds, the ground state structures were determined for the first time by minimizing their total energies with respect to all the possible atomic arrangements consistent with their published space group and prototype structure. The calculated enthalpies of formation at 0 K show a very good agreement with the available experimental results at room temperature. The finite temperature thermodynamic properties of the compounds were calculated by considering the effects of both vibrational and electronic degrees of freedom. Lattice vibration effects were calculated using the supercell method within the harmonic and quasi-harmonic approximations. The thermal electronic contributions were determined through the one-dimensional integration of the electronic density of states.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2006.01.013</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2006-05, Vol.54 (8), p.2291-2304
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_29374306
source Access via ScienceDirect (Elsevier)
subjects Aluminum
Al–Ni–Y
Applied sciences
Approximation
Atomic structure
Electronics
Exact sciences and technology
First principles
Ground state
Harmonics
Mathematical analysis
Metals. Metallurgy
Thermodynamic properties
Vibrational free energy
title Finite-temperature thermodynamic and vibrational properties of Al–Ni–Y compounds via first-principles calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-temperature%20thermodynamic%20and%20vibrational%20properties%20of%20Al%E2%80%93Ni%E2%80%93Y%20compounds%20via%20first-principles%20calculations&rft.jtitle=Acta%20materialia&rft.au=Golumbfskie,%20W.J.&rft.date=2006-05-01&rft.volume=54&rft.issue=8&rft.spage=2291&rft.epage=2304&rft.pages=2291-2304&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2006.01.013&rft_dat=%3Cproquest_cross%3E1082173756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082173756&rft_id=info:pmid/&rft_els_id=S1359645406000826&rfr_iscdi=true