Finite-temperature thermodynamic and vibrational properties of Al–Ni–Y compounds via first-principles calculations
The thermodynamic properties of ternary compounds of the Al–Ni–Y system were studied via density functional theory using the projector augmented-wave pseudopotential method, within the generalized gradient approximation. It was found that spin-polarization effects in all of the compounds are negligi...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2006-05, Vol.54 (8), p.2291-2304 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2304 |
---|---|
container_issue | 8 |
container_start_page | 2291 |
container_title | Acta materialia |
container_volume | 54 |
creator | Golumbfskie, W.J. Arroyave, R. Shin, D. Liu, Z.-K. |
description | The thermodynamic properties of ternary compounds of the Al–Ni–Y system were studied via density functional theory using the projector augmented-wave pseudopotential method, within the generalized gradient approximation. It was found that spin-polarization effects in all of the compounds are negligible. For three of the compounds, the ground state structures were determined for the first time by minimizing their total energies with respect to all the possible atomic arrangements consistent with their published space group and prototype structure. The calculated enthalpies of formation at 0
K show a very good agreement with the available experimental results at room temperature. The finite temperature thermodynamic properties of the compounds were calculated by considering the effects of both vibrational and electronic degrees of freedom. Lattice vibration effects were calculated using the supercell method within the harmonic and quasi-harmonic approximations. The thermal electronic contributions were determined through the one-dimensional integration of the electronic density of states. |
doi_str_mv | 10.1016/j.actamat.2006.01.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29374306</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645406000826</els_id><sourcerecordid>1082173756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-cff3abfdb93dc097064565386e06f628f57b67fc29fcd6a9744c28590f923b83</originalsourceid><addsrcrecordid>eNqFkc-KFDEQxhtRcF19BKEvipce86-T7pMsi6sLi1724imkqyuYobvTJumBve07-IY-iTXOgDeFIinIr6pS31dVrznbccb1-_3OQXGzKzvBmN4xTiGfVBe8M7IRqpVPKZdt32jVqufVi5z3jHFhFLuoDjdhCQWbgvOKyZUtYV2-Y5rj-LC4OUDtlrE-hIHeQlzcVK8pElkC5jr6-mr69fjzS6DjWw1xXuO2jJl4V_uQcmnWFBYI60Q0uAm26U-b_LJ65t2U8dX5vqzubz7eX39u7r5-ur2-umtAMVka8F66wY9DL0dgvWG0gW5lp5Fpr0XnWzNo40H0HkbteqMUiK7tme-FHDp5Wb09taVP_9gwFzuHDDhNbsG4ZSt6aZRkmsB3_wQ56wQ30rRHtD2hkGLOCb2lHWeXHgiyRz_s3p79sEc_LOMUkurenEe4TFL45EiY_LfYGGWkOHIfThySLoeAyWYIuACOISEUO8bwn0m_AX5Ip9M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082173756</pqid></control><display><type>article</type><title>Finite-temperature thermodynamic and vibrational properties of Al–Ni–Y compounds via first-principles calculations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Golumbfskie, W.J. ; Arroyave, R. ; Shin, D. ; Liu, Z.-K.</creator><creatorcontrib>Golumbfskie, W.J. ; Arroyave, R. ; Shin, D. ; Liu, Z.-K.</creatorcontrib><description>The thermodynamic properties of ternary compounds of the Al–Ni–Y system were studied via density functional theory using the projector augmented-wave pseudopotential method, within the generalized gradient approximation. It was found that spin-polarization effects in all of the compounds are negligible. For three of the compounds, the ground state structures were determined for the first time by minimizing their total energies with respect to all the possible atomic arrangements consistent with their published space group and prototype structure. The calculated enthalpies of formation at 0
K show a very good agreement with the available experimental results at room temperature. The finite temperature thermodynamic properties of the compounds were calculated by considering the effects of both vibrational and electronic degrees of freedom. Lattice vibration effects were calculated using the supercell method within the harmonic and quasi-harmonic approximations. The thermal electronic contributions were determined through the one-dimensional integration of the electronic density of states.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2006.01.013</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aluminum ; Al–Ni–Y ; Applied sciences ; Approximation ; Atomic structure ; Electronics ; Exact sciences and technology ; First principles ; Ground state ; Harmonics ; Mathematical analysis ; Metals. Metallurgy ; Thermodynamic properties ; Vibrational free energy</subject><ispartof>Acta materialia, 2006-05, Vol.54 (8), p.2291-2304</ispartof><rights>2006 Acta Materialia Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-cff3abfdb93dc097064565386e06f628f57b67fc29fcd6a9744c28590f923b83</citedby><cites>FETCH-LOGICAL-c403t-cff3abfdb93dc097064565386e06f628f57b67fc29fcd6a9744c28590f923b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2006.01.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17747323$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Golumbfskie, W.J.</creatorcontrib><creatorcontrib>Arroyave, R.</creatorcontrib><creatorcontrib>Shin, D.</creatorcontrib><creatorcontrib>Liu, Z.-K.</creatorcontrib><title>Finite-temperature thermodynamic and vibrational properties of Al–Ni–Y compounds via first-principles calculations</title><title>Acta materialia</title><description>The thermodynamic properties of ternary compounds of the Al–Ni–Y system were studied via density functional theory using the projector augmented-wave pseudopotential method, within the generalized gradient approximation. It was found that spin-polarization effects in all of the compounds are negligible. For three of the compounds, the ground state structures were determined for the first time by minimizing their total energies with respect to all the possible atomic arrangements consistent with their published space group and prototype structure. The calculated enthalpies of formation at 0
K show a very good agreement with the available experimental results at room temperature. The finite temperature thermodynamic properties of the compounds were calculated by considering the effects of both vibrational and electronic degrees of freedom. Lattice vibration effects were calculated using the supercell method within the harmonic and quasi-harmonic approximations. The thermal electronic contributions were determined through the one-dimensional integration of the electronic density of states.</description><subject>Aluminum</subject><subject>Al–Ni–Y</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Atomic structure</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>First principles</subject><subject>Ground state</subject><subject>Harmonics</subject><subject>Mathematical analysis</subject><subject>Metals. Metallurgy</subject><subject>Thermodynamic properties</subject><subject>Vibrational free energy</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkc-KFDEQxhtRcF19BKEvipce86-T7pMsi6sLi1724imkqyuYobvTJumBve07-IY-iTXOgDeFIinIr6pS31dVrznbccb1-_3OQXGzKzvBmN4xTiGfVBe8M7IRqpVPKZdt32jVqufVi5z3jHFhFLuoDjdhCQWbgvOKyZUtYV2-Y5rj-LC4OUDtlrE-hIHeQlzcVK8pElkC5jr6-mr69fjzS6DjWw1xXuO2jJl4V_uQcmnWFBYI60Q0uAm26U-b_LJ65t2U8dX5vqzubz7eX39u7r5-ur2-umtAMVka8F66wY9DL0dgvWG0gW5lp5Fpr0XnWzNo40H0HkbteqMUiK7tme-FHDp5Wb09taVP_9gwFzuHDDhNbsG4ZSt6aZRkmsB3_wQ56wQ30rRHtD2hkGLOCb2lHWeXHgiyRz_s3p79sEc_LOMUkurenEe4TFL45EiY_LfYGGWkOHIfThySLoeAyWYIuACOISEUO8bwn0m_AX5Ip9M</recordid><startdate>20060501</startdate><enddate>20060501</enddate><creator>Golumbfskie, W.J.</creator><creator>Arroyave, R.</creator><creator>Shin, D.</creator><creator>Liu, Z.-K.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20060501</creationdate><title>Finite-temperature thermodynamic and vibrational properties of Al–Ni–Y compounds via first-principles calculations</title><author>Golumbfskie, W.J. ; Arroyave, R. ; Shin, D. ; Liu, Z.-K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-cff3abfdb93dc097064565386e06f628f57b67fc29fcd6a9744c28590f923b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Aluminum</topic><topic>Al–Ni–Y</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Atomic structure</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>First principles</topic><topic>Ground state</topic><topic>Harmonics</topic><topic>Mathematical analysis</topic><topic>Metals. Metallurgy</topic><topic>Thermodynamic properties</topic><topic>Vibrational free energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golumbfskie, W.J.</creatorcontrib><creatorcontrib>Arroyave, R.</creatorcontrib><creatorcontrib>Shin, D.</creatorcontrib><creatorcontrib>Liu, Z.-K.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golumbfskie, W.J.</au><au>Arroyave, R.</au><au>Shin, D.</au><au>Liu, Z.-K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-temperature thermodynamic and vibrational properties of Al–Ni–Y compounds via first-principles calculations</atitle><jtitle>Acta materialia</jtitle><date>2006-05-01</date><risdate>2006</risdate><volume>54</volume><issue>8</issue><spage>2291</spage><epage>2304</epage><pages>2291-2304</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The thermodynamic properties of ternary compounds of the Al–Ni–Y system were studied via density functional theory using the projector augmented-wave pseudopotential method, within the generalized gradient approximation. It was found that spin-polarization effects in all of the compounds are negligible. For three of the compounds, the ground state structures were determined for the first time by minimizing their total energies with respect to all the possible atomic arrangements consistent with their published space group and prototype structure. The calculated enthalpies of formation at 0
K show a very good agreement with the available experimental results at room temperature. The finite temperature thermodynamic properties of the compounds were calculated by considering the effects of both vibrational and electronic degrees of freedom. Lattice vibration effects were calculated using the supercell method within the harmonic and quasi-harmonic approximations. The thermal electronic contributions were determined through the one-dimensional integration of the electronic density of states.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2006.01.013</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2006-05, Vol.54 (8), p.2291-2304 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_proquest_miscellaneous_29374306 |
source | Access via ScienceDirect (Elsevier) |
subjects | Aluminum Al–Ni–Y Applied sciences Approximation Atomic structure Electronics Exact sciences and technology First principles Ground state Harmonics Mathematical analysis Metals. Metallurgy Thermodynamic properties Vibrational free energy |
title | Finite-temperature thermodynamic and vibrational properties of Al–Ni–Y compounds via first-principles calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-temperature%20thermodynamic%20and%20vibrational%20properties%20of%20Al%E2%80%93Ni%E2%80%93Y%20compounds%20via%20first-principles%20calculations&rft.jtitle=Acta%20materialia&rft.au=Golumbfskie,%20W.J.&rft.date=2006-05-01&rft.volume=54&rft.issue=8&rft.spage=2291&rft.epage=2304&rft.pages=2291-2304&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2006.01.013&rft_dat=%3Cproquest_cross%3E1082173756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082173756&rft_id=info:pmid/&rft_els_id=S1359645406000826&rfr_iscdi=true |