Trisomy 21 Alters Cell Proliferation and Migration of iPSC-Derived Cardiomyocytes on Type VI Collagen
Purpose Individuals with Down syndrome (DS) are 2000 times more likely to develop a congenital heart defect (CHD) than the typical population Freeman et al. in Am J Med Genet 80:213–217 (1998). The majority of CHDs in individuals with DS characteristically involve the atrioventricular (AV) canal, in...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular bioengineering 2024-02, Vol.17 (1), p.25-34 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | 1 |
container_start_page | 25 |
container_title | Cellular and molecular bioengineering |
container_volume | 17 |
creator | Reeser, Rachel S. Salazar, Alyssa K. Prutton, Kendra M. Roede, James R. VeDepo, Mitchell C. Jacot, Jeffrey G. |
description | Purpose
Individuals with Down syndrome (DS) are 2000 times more likely to develop a congenital heart defect (CHD) than the typical population Freeman et al. in Am J Med Genet 80:213–217 (1998). The majority of CHDs in individuals with DS characteristically involve the atrioventricular (AV) canal, including the valves and the atrial or ventricular septum. Type VI collagen (COLVI) is the primary structural component in the developing septa and endocardial cushions, with two of the three genes encoding for COLVI located on human chromosome 21 and upregulated in Down syndrome (von Kaisenberg et al. in Obstet Gynecol 91:319–323, 1998; Gittenberger-De Groot et al. in Anatom Rec Part A 275:1109–1116, 2023).
Methods
To investigate the effect of COLVI dosage on cardiomyocytes with trisomy 21, induced pluripotent stem cells (iPSC) from individuals with DS and age- and sex-matched controls were differentiated into cardiomyocytes (iPSC-CM) and plated on varying concentrations of COLVI.
Results
Real time quantitative PCR showed decreased expression of cardiac-specific genes of DS iPSC-CM lines compared to control iPSC-CM. As expected, DS iPSC-CM had increased expression of genes on chromosome 21, including
COL6A1
,
COL6A2
, as well as genes not located on chromosome 21, namely
COL6A3
,
HAS2
and
HYAL2
. We found that higher concentrations of COLVI result in decreased proliferation and migration of DS iPSC-CM, but not control iPSC-CM.
Conclusions
These results suggest that the increased expression of COLVI in DS may result in lower migration-driven elongation of endocardial cushions stemming from lower cell proliferation and migration, possibly contributing to the high incidence of CHD in the DS population. |
doi_str_mv | 10.1007/s12195-023-00791-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2937337680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933041304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-56599e95cddb6fd5cb46605759fc1aa5cef7127893281a31d63b12c8f8adbbb93</originalsourceid><addsrcrecordid>eNp9kUtPxCAUhYnR-P4DLgyJGzdVHgMtS1OfiUYTR7eEwu0E0ykjdIzz70Vn1MSFCwI39zsHLgehA0pOKCHlaaKMKlEQxotcKlq8r6FtWklRCML5-s-ZiS20k9ILIZIRPtpEW7wacZEV2wjG0acwXWBG8Vk3QEy4hq7DDzF0voVoBh96bHqH7_xkVYUW-4fHujiH6N_A4dpE57NHsIsBEs7EeDED_HyD69B1ZgL9HtpoTZdgf7XvoqfLi3F9XdzeX93UZ7eF5UwOhZBCKVDCOtfI1gnbjKQkohSqtdQYYaEtKSsrxVlFDadO8oYyW7WVcU3TKL6Ljpe-sxhe55AGPfXJ5nlMD2GeNFO85LyUFcno0R_0Jcxjn1_3SXEyonllii0pG0NKEVo9i35q4kJToj9D0MsQdA5Bf4Wg37PocGU9b6bgfiTfv54BvgRSbvUTiL93_2P7Ab2wkcc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933041304</pqid></control><display><type>article</type><title>Trisomy 21 Alters Cell Proliferation and Migration of iPSC-Derived Cardiomyocytes on Type VI Collagen</title><source>SpringerNature Journals</source><creator>Reeser, Rachel S. ; Salazar, Alyssa K. ; Prutton, Kendra M. ; Roede, James R. ; VeDepo, Mitchell C. ; Jacot, Jeffrey G.</creator><creatorcontrib>Reeser, Rachel S. ; Salazar, Alyssa K. ; Prutton, Kendra M. ; Roede, James R. ; VeDepo, Mitchell C. ; Jacot, Jeffrey G.</creatorcontrib><description>Purpose
Individuals with Down syndrome (DS) are 2000 times more likely to develop a congenital heart defect (CHD) than the typical population Freeman et al. in Am J Med Genet 80:213–217 (1998). The majority of CHDs in individuals with DS characteristically involve the atrioventricular (AV) canal, including the valves and the atrial or ventricular septum. Type VI collagen (COLVI) is the primary structural component in the developing septa and endocardial cushions, with two of the three genes encoding for COLVI located on human chromosome 21 and upregulated in Down syndrome (von Kaisenberg et al. in Obstet Gynecol 91:319–323, 1998; Gittenberger-De Groot et al. in Anatom Rec Part A 275:1109–1116, 2023).
Methods
To investigate the effect of COLVI dosage on cardiomyocytes with trisomy 21, induced pluripotent stem cells (iPSC) from individuals with DS and age- and sex-matched controls were differentiated into cardiomyocytes (iPSC-CM) and plated on varying concentrations of COLVI.
Results
Real time quantitative PCR showed decreased expression of cardiac-specific genes of DS iPSC-CM lines compared to control iPSC-CM. As expected, DS iPSC-CM had increased expression of genes on chromosome 21, including
COL6A1
,
COL6A2
, as well as genes not located on chromosome 21, namely
COL6A3
,
HAS2
and
HYAL2
. We found that higher concentrations of COLVI result in decreased proliferation and migration of DS iPSC-CM, but not control iPSC-CM.
Conclusions
These results suggest that the increased expression of COLVI in DS may result in lower migration-driven elongation of endocardial cushions stemming from lower cell proliferation and migration, possibly contributing to the high incidence of CHD in the DS population.</description><identifier>ISSN: 1865-5025</identifier><identifier>EISSN: 1865-5033</identifier><identifier>DOI: 10.1007/s12195-023-00791-x</identifier><identifier>PMID: 38435791</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Biological and Medical Physics ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical Engineering/Biotechnology ; Biophysics ; Cardiomyocytes ; Cell Biology ; Cell growth ; Cell migration ; Cell proliferation ; Chromosome 21 ; Chromosomes ; Collagen ; Collagen (type VI) ; Cushions ; Down syndrome ; Down's syndrome ; Engineering ; Gene expression ; Genes ; Original Article ; Pluripotency ; Stem cells ; Trisomy</subject><ispartof>Cellular and molecular bioengineering, 2024-02, Vol.17 (1), p.25-34</ispartof><rights>The Author(s) under exclusive licence to Biomedical Engineering Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-56599e95cddb6fd5cb46605759fc1aa5cef7127893281a31d63b12c8f8adbbb93</cites><orcidid>0000-0002-1272-5055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12195-023-00791-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12195-023-00791-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38435791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reeser, Rachel S.</creatorcontrib><creatorcontrib>Salazar, Alyssa K.</creatorcontrib><creatorcontrib>Prutton, Kendra M.</creatorcontrib><creatorcontrib>Roede, James R.</creatorcontrib><creatorcontrib>VeDepo, Mitchell C.</creatorcontrib><creatorcontrib>Jacot, Jeffrey G.</creatorcontrib><title>Trisomy 21 Alters Cell Proliferation and Migration of iPSC-Derived Cardiomyocytes on Type VI Collagen</title><title>Cellular and molecular bioengineering</title><addtitle>Cel. Mol. Bioeng</addtitle><addtitle>Cell Mol Bioeng</addtitle><description>Purpose
Individuals with Down syndrome (DS) are 2000 times more likely to develop a congenital heart defect (CHD) than the typical population Freeman et al. in Am J Med Genet 80:213–217 (1998). The majority of CHDs in individuals with DS characteristically involve the atrioventricular (AV) canal, including the valves and the atrial or ventricular septum. Type VI collagen (COLVI) is the primary structural component in the developing septa and endocardial cushions, with two of the three genes encoding for COLVI located on human chromosome 21 and upregulated in Down syndrome (von Kaisenberg et al. in Obstet Gynecol 91:319–323, 1998; Gittenberger-De Groot et al. in Anatom Rec Part A 275:1109–1116, 2023).
Methods
To investigate the effect of COLVI dosage on cardiomyocytes with trisomy 21, induced pluripotent stem cells (iPSC) from individuals with DS and age- and sex-matched controls were differentiated into cardiomyocytes (iPSC-CM) and plated on varying concentrations of COLVI.
Results
Real time quantitative PCR showed decreased expression of cardiac-specific genes of DS iPSC-CM lines compared to control iPSC-CM. As expected, DS iPSC-CM had increased expression of genes on chromosome 21, including
COL6A1
,
COL6A2
, as well as genes not located on chromosome 21, namely
COL6A3
,
HAS2
and
HYAL2
. We found that higher concentrations of COLVI result in decreased proliferation and migration of DS iPSC-CM, but not control iPSC-CM.
Conclusions
These results suggest that the increased expression of COLVI in DS may result in lower migration-driven elongation of endocardial cushions stemming from lower cell proliferation and migration, possibly contributing to the high incidence of CHD in the DS population.</description><subject>Biological and Medical Physics</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biophysics</subject><subject>Cardiomyocytes</subject><subject>Cell Biology</subject><subject>Cell growth</subject><subject>Cell migration</subject><subject>Cell proliferation</subject><subject>Chromosome 21</subject><subject>Chromosomes</subject><subject>Collagen</subject><subject>Collagen (type VI)</subject><subject>Cushions</subject><subject>Down syndrome</subject><subject>Down's syndrome</subject><subject>Engineering</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Original Article</subject><subject>Pluripotency</subject><subject>Stem cells</subject><subject>Trisomy</subject><issn>1865-5025</issn><issn>1865-5033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUtPxCAUhYnR-P4DLgyJGzdVHgMtS1OfiUYTR7eEwu0E0ykjdIzz70Vn1MSFCwI39zsHLgehA0pOKCHlaaKMKlEQxotcKlq8r6FtWklRCML5-s-ZiS20k9ILIZIRPtpEW7wacZEV2wjG0acwXWBG8Vk3QEy4hq7DDzF0voVoBh96bHqH7_xkVYUW-4fHujiH6N_A4dpE57NHsIsBEs7EeDED_HyD69B1ZgL9HtpoTZdgf7XvoqfLi3F9XdzeX93UZ7eF5UwOhZBCKVDCOtfI1gnbjKQkohSqtdQYYaEtKSsrxVlFDadO8oYyW7WVcU3TKL6Ljpe-sxhe55AGPfXJ5nlMD2GeNFO85LyUFcno0R_0Jcxjn1_3SXEyonllii0pG0NKEVo9i35q4kJToj9D0MsQdA5Bf4Wg37PocGU9b6bgfiTfv54BvgRSbvUTiL93_2P7Ab2wkcc</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Reeser, Rachel S.</creator><creator>Salazar, Alyssa K.</creator><creator>Prutton, Kendra M.</creator><creator>Roede, James R.</creator><creator>VeDepo, Mitchell C.</creator><creator>Jacot, Jeffrey G.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1272-5055</orcidid></search><sort><creationdate>20240201</creationdate><title>Trisomy 21 Alters Cell Proliferation and Migration of iPSC-Derived Cardiomyocytes on Type VI Collagen</title><author>Reeser, Rachel S. ; Salazar, Alyssa K. ; Prutton, Kendra M. ; Roede, James R. ; VeDepo, Mitchell C. ; Jacot, Jeffrey G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-56599e95cddb6fd5cb46605759fc1aa5cef7127893281a31d63b12c8f8adbbb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological and Medical Physics</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biophysics</topic><topic>Cardiomyocytes</topic><topic>Cell Biology</topic><topic>Cell growth</topic><topic>Cell migration</topic><topic>Cell proliferation</topic><topic>Chromosome 21</topic><topic>Chromosomes</topic><topic>Collagen</topic><topic>Collagen (type VI)</topic><topic>Cushions</topic><topic>Down syndrome</topic><topic>Down's syndrome</topic><topic>Engineering</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Original Article</topic><topic>Pluripotency</topic><topic>Stem cells</topic><topic>Trisomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reeser, Rachel S.</creatorcontrib><creatorcontrib>Salazar, Alyssa K.</creatorcontrib><creatorcontrib>Prutton, Kendra M.</creatorcontrib><creatorcontrib>Roede, James R.</creatorcontrib><creatorcontrib>VeDepo, Mitchell C.</creatorcontrib><creatorcontrib>Jacot, Jeffrey G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cellular and molecular bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reeser, Rachel S.</au><au>Salazar, Alyssa K.</au><au>Prutton, Kendra M.</au><au>Roede, James R.</au><au>VeDepo, Mitchell C.</au><au>Jacot, Jeffrey G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trisomy 21 Alters Cell Proliferation and Migration of iPSC-Derived Cardiomyocytes on Type VI Collagen</atitle><jtitle>Cellular and molecular bioengineering</jtitle><stitle>Cel. Mol. Bioeng</stitle><addtitle>Cell Mol Bioeng</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>17</volume><issue>1</issue><spage>25</spage><epage>34</epage><pages>25-34</pages><issn>1865-5025</issn><eissn>1865-5033</eissn><abstract>Purpose
Individuals with Down syndrome (DS) are 2000 times more likely to develop a congenital heart defect (CHD) than the typical population Freeman et al. in Am J Med Genet 80:213–217 (1998). The majority of CHDs in individuals with DS characteristically involve the atrioventricular (AV) canal, including the valves and the atrial or ventricular septum. Type VI collagen (COLVI) is the primary structural component in the developing septa and endocardial cushions, with two of the three genes encoding for COLVI located on human chromosome 21 and upregulated in Down syndrome (von Kaisenberg et al. in Obstet Gynecol 91:319–323, 1998; Gittenberger-De Groot et al. in Anatom Rec Part A 275:1109–1116, 2023).
Methods
To investigate the effect of COLVI dosage on cardiomyocytes with trisomy 21, induced pluripotent stem cells (iPSC) from individuals with DS and age- and sex-matched controls were differentiated into cardiomyocytes (iPSC-CM) and plated on varying concentrations of COLVI.
Results
Real time quantitative PCR showed decreased expression of cardiac-specific genes of DS iPSC-CM lines compared to control iPSC-CM. As expected, DS iPSC-CM had increased expression of genes on chromosome 21, including
COL6A1
,
COL6A2
, as well as genes not located on chromosome 21, namely
COL6A3
,
HAS2
and
HYAL2
. We found that higher concentrations of COLVI result in decreased proliferation and migration of DS iPSC-CM, but not control iPSC-CM.
Conclusions
These results suggest that the increased expression of COLVI in DS may result in lower migration-driven elongation of endocardial cushions stemming from lower cell proliferation and migration, possibly contributing to the high incidence of CHD in the DS population.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>38435791</pmid><doi>10.1007/s12195-023-00791-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1272-5055</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1865-5025 |
ispartof | Cellular and molecular bioengineering, 2024-02, Vol.17 (1), p.25-34 |
issn | 1865-5025 1865-5033 |
language | eng |
recordid | cdi_proquest_miscellaneous_2937337680 |
source | SpringerNature Journals |
subjects | Biological and Medical Physics Biomaterials Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology Biophysics Cardiomyocytes Cell Biology Cell growth Cell migration Cell proliferation Chromosome 21 Chromosomes Collagen Collagen (type VI) Cushions Down syndrome Down's syndrome Engineering Gene expression Genes Original Article Pluripotency Stem cells Trisomy |
title | Trisomy 21 Alters Cell Proliferation and Migration of iPSC-Derived Cardiomyocytes on Type VI Collagen |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trisomy%2021%20Alters%20Cell%20Proliferation%20and%20Migration%20of%20iPSC-Derived%20Cardiomyocytes%20on%20Type%20VI%20Collagen&rft.jtitle=Cellular%20and%20molecular%20bioengineering&rft.au=Reeser,%20Rachel%20S.&rft.date=2024-02-01&rft.volume=17&rft.issue=1&rft.spage=25&rft.epage=34&rft.pages=25-34&rft.issn=1865-5025&rft.eissn=1865-5033&rft_id=info:doi/10.1007/s12195-023-00791-x&rft_dat=%3Cproquest_cross%3E2933041304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933041304&rft_id=info:pmid/38435791&rfr_iscdi=true |