Trisomy 21 Alters Cell Proliferation and Migration of iPSC-Derived Cardiomyocytes on Type VI Collagen

Purpose Individuals with Down syndrome (DS) are 2000 times more likely to develop a congenital heart defect (CHD) than the typical population Freeman et al. in Am J Med Genet 80:213–217 (1998). The majority of CHDs in individuals with DS characteristically involve the atrioventricular (AV) canal, in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular bioengineering 2024-02, Vol.17 (1), p.25-34
Hauptverfasser: Reeser, Rachel S., Salazar, Alyssa K., Prutton, Kendra M., Roede, James R., VeDepo, Mitchell C., Jacot, Jeffrey G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 1
container_start_page 25
container_title Cellular and molecular bioengineering
container_volume 17
creator Reeser, Rachel S.
Salazar, Alyssa K.
Prutton, Kendra M.
Roede, James R.
VeDepo, Mitchell C.
Jacot, Jeffrey G.
description Purpose Individuals with Down syndrome (DS) are 2000 times more likely to develop a congenital heart defect (CHD) than the typical population Freeman et al. in Am J Med Genet 80:213–217 (1998). The majority of CHDs in individuals with DS characteristically involve the atrioventricular (AV) canal, including the valves and the atrial or ventricular septum. Type VI collagen (COLVI) is the primary structural component in the developing septa and endocardial cushions, with two of the three genes encoding for COLVI located on human chromosome 21 and upregulated in Down syndrome (von Kaisenberg et al. in Obstet Gynecol 91:319–323, 1998; Gittenberger-De Groot et al. in Anatom Rec Part A 275:1109–1116, 2023). Methods To investigate the effect of COLVI dosage on cardiomyocytes with trisomy 21, induced pluripotent stem cells (iPSC) from individuals with DS and age- and sex-matched controls were differentiated into cardiomyocytes (iPSC-CM) and plated on varying concentrations of COLVI. Results Real time quantitative PCR showed decreased expression of cardiac-specific genes of DS iPSC-CM lines compared to control iPSC-CM. As expected, DS iPSC-CM had increased expression of genes on chromosome 21, including COL6A1 , COL6A2 , as well as genes not located on chromosome 21, namely COL6A3 , HAS2 and HYAL2 . We found that higher concentrations of COLVI result in decreased proliferation and migration of DS iPSC-CM, but not control iPSC-CM. Conclusions These results suggest that the increased expression of COLVI in DS may result in lower migration-driven elongation of endocardial cushions stemming from lower cell proliferation and migration, possibly contributing to the high incidence of CHD in the DS population.
doi_str_mv 10.1007/s12195-023-00791-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2937337680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933041304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-56599e95cddb6fd5cb46605759fc1aa5cef7127893281a31d63b12c8f8adbbb93</originalsourceid><addsrcrecordid>eNp9kUtPxCAUhYnR-P4DLgyJGzdVHgMtS1OfiUYTR7eEwu0E0ykjdIzz70Vn1MSFCwI39zsHLgehA0pOKCHlaaKMKlEQxotcKlq8r6FtWklRCML5-s-ZiS20k9ILIZIRPtpEW7wacZEV2wjG0acwXWBG8Vk3QEy4hq7DDzF0voVoBh96bHqH7_xkVYUW-4fHujiH6N_A4dpE57NHsIsBEs7EeDED_HyD69B1ZgL9HtpoTZdgf7XvoqfLi3F9XdzeX93UZ7eF5UwOhZBCKVDCOtfI1gnbjKQkohSqtdQYYaEtKSsrxVlFDadO8oYyW7WVcU3TKL6Ljpe-sxhe55AGPfXJ5nlMD2GeNFO85LyUFcno0R_0Jcxjn1_3SXEyonllii0pG0NKEVo9i35q4kJToj9D0MsQdA5Bf4Wg37PocGU9b6bgfiTfv54BvgRSbvUTiL93_2P7Ab2wkcc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933041304</pqid></control><display><type>article</type><title>Trisomy 21 Alters Cell Proliferation and Migration of iPSC-Derived Cardiomyocytes on Type VI Collagen</title><source>SpringerNature Journals</source><creator>Reeser, Rachel S. ; Salazar, Alyssa K. ; Prutton, Kendra M. ; Roede, James R. ; VeDepo, Mitchell C. ; Jacot, Jeffrey G.</creator><creatorcontrib>Reeser, Rachel S. ; Salazar, Alyssa K. ; Prutton, Kendra M. ; Roede, James R. ; VeDepo, Mitchell C. ; Jacot, Jeffrey G.</creatorcontrib><description>Purpose Individuals with Down syndrome (DS) are 2000 times more likely to develop a congenital heart defect (CHD) than the typical population Freeman et al. in Am J Med Genet 80:213–217 (1998). The majority of CHDs in individuals with DS characteristically involve the atrioventricular (AV) canal, including the valves and the atrial or ventricular septum. Type VI collagen (COLVI) is the primary structural component in the developing septa and endocardial cushions, with two of the three genes encoding for COLVI located on human chromosome 21 and upregulated in Down syndrome (von Kaisenberg et al. in Obstet Gynecol 91:319–323, 1998; Gittenberger-De Groot et al. in Anatom Rec Part A 275:1109–1116, 2023). Methods To investigate the effect of COLVI dosage on cardiomyocytes with trisomy 21, induced pluripotent stem cells (iPSC) from individuals with DS and age- and sex-matched controls were differentiated into cardiomyocytes (iPSC-CM) and plated on varying concentrations of COLVI. Results Real time quantitative PCR showed decreased expression of cardiac-specific genes of DS iPSC-CM lines compared to control iPSC-CM. As expected, DS iPSC-CM had increased expression of genes on chromosome 21, including COL6A1 , COL6A2 , as well as genes not located on chromosome 21, namely COL6A3 , HAS2 and HYAL2 . We found that higher concentrations of COLVI result in decreased proliferation and migration of DS iPSC-CM, but not control iPSC-CM. Conclusions These results suggest that the increased expression of COLVI in DS may result in lower migration-driven elongation of endocardial cushions stemming from lower cell proliferation and migration, possibly contributing to the high incidence of CHD in the DS population.</description><identifier>ISSN: 1865-5025</identifier><identifier>EISSN: 1865-5033</identifier><identifier>DOI: 10.1007/s12195-023-00791-x</identifier><identifier>PMID: 38435791</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Biological and Medical Physics ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical Engineering/Biotechnology ; Biophysics ; Cardiomyocytes ; Cell Biology ; Cell growth ; Cell migration ; Cell proliferation ; Chromosome 21 ; Chromosomes ; Collagen ; Collagen (type VI) ; Cushions ; Down syndrome ; Down's syndrome ; Engineering ; Gene expression ; Genes ; Original Article ; Pluripotency ; Stem cells ; Trisomy</subject><ispartof>Cellular and molecular bioengineering, 2024-02, Vol.17 (1), p.25-34</ispartof><rights>The Author(s) under exclusive licence to Biomedical Engineering Society 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-56599e95cddb6fd5cb46605759fc1aa5cef7127893281a31d63b12c8f8adbbb93</cites><orcidid>0000-0002-1272-5055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12195-023-00791-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12195-023-00791-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38435791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reeser, Rachel S.</creatorcontrib><creatorcontrib>Salazar, Alyssa K.</creatorcontrib><creatorcontrib>Prutton, Kendra M.</creatorcontrib><creatorcontrib>Roede, James R.</creatorcontrib><creatorcontrib>VeDepo, Mitchell C.</creatorcontrib><creatorcontrib>Jacot, Jeffrey G.</creatorcontrib><title>Trisomy 21 Alters Cell Proliferation and Migration of iPSC-Derived Cardiomyocytes on Type VI Collagen</title><title>Cellular and molecular bioengineering</title><addtitle>Cel. Mol. Bioeng</addtitle><addtitle>Cell Mol Bioeng</addtitle><description>Purpose Individuals with Down syndrome (DS) are 2000 times more likely to develop a congenital heart defect (CHD) than the typical population Freeman et al. in Am J Med Genet 80:213–217 (1998). The majority of CHDs in individuals with DS characteristically involve the atrioventricular (AV) canal, including the valves and the atrial or ventricular septum. Type VI collagen (COLVI) is the primary structural component in the developing septa and endocardial cushions, with two of the three genes encoding for COLVI located on human chromosome 21 and upregulated in Down syndrome (von Kaisenberg et al. in Obstet Gynecol 91:319–323, 1998; Gittenberger-De Groot et al. in Anatom Rec Part A 275:1109–1116, 2023). Methods To investigate the effect of COLVI dosage on cardiomyocytes with trisomy 21, induced pluripotent stem cells (iPSC) from individuals with DS and age- and sex-matched controls were differentiated into cardiomyocytes (iPSC-CM) and plated on varying concentrations of COLVI. Results Real time quantitative PCR showed decreased expression of cardiac-specific genes of DS iPSC-CM lines compared to control iPSC-CM. As expected, DS iPSC-CM had increased expression of genes on chromosome 21, including COL6A1 , COL6A2 , as well as genes not located on chromosome 21, namely COL6A3 , HAS2 and HYAL2 . We found that higher concentrations of COLVI result in decreased proliferation and migration of DS iPSC-CM, but not control iPSC-CM. Conclusions These results suggest that the increased expression of COLVI in DS may result in lower migration-driven elongation of endocardial cushions stemming from lower cell proliferation and migration, possibly contributing to the high incidence of CHD in the DS population.</description><subject>Biological and Medical Physics</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biophysics</subject><subject>Cardiomyocytes</subject><subject>Cell Biology</subject><subject>Cell growth</subject><subject>Cell migration</subject><subject>Cell proliferation</subject><subject>Chromosome 21</subject><subject>Chromosomes</subject><subject>Collagen</subject><subject>Collagen (type VI)</subject><subject>Cushions</subject><subject>Down syndrome</subject><subject>Down's syndrome</subject><subject>Engineering</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Original Article</subject><subject>Pluripotency</subject><subject>Stem cells</subject><subject>Trisomy</subject><issn>1865-5025</issn><issn>1865-5033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUtPxCAUhYnR-P4DLgyJGzdVHgMtS1OfiUYTR7eEwu0E0ykjdIzz70Vn1MSFCwI39zsHLgehA0pOKCHlaaKMKlEQxotcKlq8r6FtWklRCML5-s-ZiS20k9ILIZIRPtpEW7wacZEV2wjG0acwXWBG8Vk3QEy4hq7DDzF0voVoBh96bHqH7_xkVYUW-4fHujiH6N_A4dpE57NHsIsBEs7EeDED_HyD69B1ZgL9HtpoTZdgf7XvoqfLi3F9XdzeX93UZ7eF5UwOhZBCKVDCOtfI1gnbjKQkohSqtdQYYaEtKSsrxVlFDadO8oYyW7WVcU3TKL6Ljpe-sxhe55AGPfXJ5nlMD2GeNFO85LyUFcno0R_0Jcxjn1_3SXEyonllii0pG0NKEVo9i35q4kJToj9D0MsQdA5Bf4Wg37PocGU9b6bgfiTfv54BvgRSbvUTiL93_2P7Ab2wkcc</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Reeser, Rachel S.</creator><creator>Salazar, Alyssa K.</creator><creator>Prutton, Kendra M.</creator><creator>Roede, James R.</creator><creator>VeDepo, Mitchell C.</creator><creator>Jacot, Jeffrey G.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1272-5055</orcidid></search><sort><creationdate>20240201</creationdate><title>Trisomy 21 Alters Cell Proliferation and Migration of iPSC-Derived Cardiomyocytes on Type VI Collagen</title><author>Reeser, Rachel S. ; Salazar, Alyssa K. ; Prutton, Kendra M. ; Roede, James R. ; VeDepo, Mitchell C. ; Jacot, Jeffrey G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-56599e95cddb6fd5cb46605759fc1aa5cef7127893281a31d63b12c8f8adbbb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological and Medical Physics</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biophysics</topic><topic>Cardiomyocytes</topic><topic>Cell Biology</topic><topic>Cell growth</topic><topic>Cell migration</topic><topic>Cell proliferation</topic><topic>Chromosome 21</topic><topic>Chromosomes</topic><topic>Collagen</topic><topic>Collagen (type VI)</topic><topic>Cushions</topic><topic>Down syndrome</topic><topic>Down's syndrome</topic><topic>Engineering</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Original Article</topic><topic>Pluripotency</topic><topic>Stem cells</topic><topic>Trisomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reeser, Rachel S.</creatorcontrib><creatorcontrib>Salazar, Alyssa K.</creatorcontrib><creatorcontrib>Prutton, Kendra M.</creatorcontrib><creatorcontrib>Roede, James R.</creatorcontrib><creatorcontrib>VeDepo, Mitchell C.</creatorcontrib><creatorcontrib>Jacot, Jeffrey G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cellular and molecular bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reeser, Rachel S.</au><au>Salazar, Alyssa K.</au><au>Prutton, Kendra M.</au><au>Roede, James R.</au><au>VeDepo, Mitchell C.</au><au>Jacot, Jeffrey G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trisomy 21 Alters Cell Proliferation and Migration of iPSC-Derived Cardiomyocytes on Type VI Collagen</atitle><jtitle>Cellular and molecular bioengineering</jtitle><stitle>Cel. Mol. Bioeng</stitle><addtitle>Cell Mol Bioeng</addtitle><date>2024-02-01</date><risdate>2024</risdate><volume>17</volume><issue>1</issue><spage>25</spage><epage>34</epage><pages>25-34</pages><issn>1865-5025</issn><eissn>1865-5033</eissn><abstract>Purpose Individuals with Down syndrome (DS) are 2000 times more likely to develop a congenital heart defect (CHD) than the typical population Freeman et al. in Am J Med Genet 80:213–217 (1998). The majority of CHDs in individuals with DS characteristically involve the atrioventricular (AV) canal, including the valves and the atrial or ventricular septum. Type VI collagen (COLVI) is the primary structural component in the developing septa and endocardial cushions, with two of the three genes encoding for COLVI located on human chromosome 21 and upregulated in Down syndrome (von Kaisenberg et al. in Obstet Gynecol 91:319–323, 1998; Gittenberger-De Groot et al. in Anatom Rec Part A 275:1109–1116, 2023). Methods To investigate the effect of COLVI dosage on cardiomyocytes with trisomy 21, induced pluripotent stem cells (iPSC) from individuals with DS and age- and sex-matched controls were differentiated into cardiomyocytes (iPSC-CM) and plated on varying concentrations of COLVI. Results Real time quantitative PCR showed decreased expression of cardiac-specific genes of DS iPSC-CM lines compared to control iPSC-CM. As expected, DS iPSC-CM had increased expression of genes on chromosome 21, including COL6A1 , COL6A2 , as well as genes not located on chromosome 21, namely COL6A3 , HAS2 and HYAL2 . We found that higher concentrations of COLVI result in decreased proliferation and migration of DS iPSC-CM, but not control iPSC-CM. Conclusions These results suggest that the increased expression of COLVI in DS may result in lower migration-driven elongation of endocardial cushions stemming from lower cell proliferation and migration, possibly contributing to the high incidence of CHD in the DS population.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>38435791</pmid><doi>10.1007/s12195-023-00791-x</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1272-5055</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1865-5025
ispartof Cellular and molecular bioengineering, 2024-02, Vol.17 (1), p.25-34
issn 1865-5025
1865-5033
language eng
recordid cdi_proquest_miscellaneous_2937337680
source SpringerNature Journals
subjects Biological and Medical Physics
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Biophysics
Cardiomyocytes
Cell Biology
Cell growth
Cell migration
Cell proliferation
Chromosome 21
Chromosomes
Collagen
Collagen (type VI)
Cushions
Down syndrome
Down's syndrome
Engineering
Gene expression
Genes
Original Article
Pluripotency
Stem cells
Trisomy
title Trisomy 21 Alters Cell Proliferation and Migration of iPSC-Derived Cardiomyocytes on Type VI Collagen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trisomy%2021%20Alters%20Cell%20Proliferation%20and%20Migration%20of%20iPSC-Derived%20Cardiomyocytes%20on%20Type%20VI%20Collagen&rft.jtitle=Cellular%20and%20molecular%20bioengineering&rft.au=Reeser,%20Rachel%20S.&rft.date=2024-02-01&rft.volume=17&rft.issue=1&rft.spage=25&rft.epage=34&rft.pages=25-34&rft.issn=1865-5025&rft.eissn=1865-5033&rft_id=info:doi/10.1007/s12195-023-00791-x&rft_dat=%3Cproquest_cross%3E2933041304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933041304&rft_id=info:pmid/38435791&rfr_iscdi=true