Finite element simulation on thermoforming acrylic sheets using dynamic explicit method

After optimising the critical material parameters obtained from hot tensile tests, a dynamic explicit software package, PAM-FORM™, is used to simulate the thermoforming process of polymeric sheet. A hyperelastic constitutive law based on the Mooney-Rivlin model has been successfully adopted to carry...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers & polymer composites 2006-01, Vol.14 (3), p.307-328
Hauptverfasser: DONG, Y, LIN, R. J. T, BHATTACHARYYA, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 328
container_issue 3
container_start_page 307
container_title Polymers & polymer composites
container_volume 14
creator DONG, Y
LIN, R. J. T
BHATTACHARYYA, D
description After optimising the critical material parameters obtained from hot tensile tests, a dynamic explicit software package, PAM-FORM™, is used to simulate the thermoforming process of polymeric sheet. A hyperelastic constitutive law based on the Mooney-Rivlin model has been successfully adopted to carry out the initial simulation on bubble inflation and to identify the material parameters. It has shown a good agreement of the deformation profile with the experimental results. In this paper, further investigations are concentrated on the thickness distribution analysis and the strain states of the bubble inflation along with a comparison to the results from kinematic Grid Strain Analysis (GSA). The numerical simulation of pressure forming of a cup, whose forming mechanisms have been explained reasonably well with the available Williams’ analytical solutions, is also presented. For a more academic case, the adaptive mesh refinement scheme has been employed in the simulation of thermoforming a complex-shaped rectangular container to well predict the wall thickness distribution. The final simulation results of the deformation at different stages of forming process and the analyses of final part geometry are also presented.
doi_str_mv 10.1177/096739110601400310
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_29371330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A180592243</galeid><sourcerecordid>A180592243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-fd443bc6d94764f43420a36dcd0a28cdbf7c3e1341b8f365de45318dbf90cf3e3</originalsourceid><addsrcrecordid>eNplkVFr2zAQx8XoYGnXL7AnM-jenEk62bIfS1jXQWAvG300inRqFGwplWRovv1kEih06EDwu99fnDhCvjC6ZkzK77RvJfSM0ZYyQSkw-oGsmJBdzQu-IqtFqBfjE7lO6UApZ23brMjTg_MuY4UjTuhzldw0jyq74KtSeY9xCjbEyfnnSul4Gp2u0h4xp2pOCzQnr6YC8fVYei5XE-Z9MJ_JR6vGhLeX-4b8ffjxZ_NYb3___LW539YapMi1NULATremF7IVVoDgVEFrtKGKd9rsrNSADATbdRbaxqBogHWF91RbQLgh387vHmN4mTHlYXJJ4zgqj2FOA-9BMgBaxK_vxEOYoy-zDayXopEdX6T1WXpWIw7O25Cj0uUYLH8MHq0r_J51tOk5F1AC_BzQMaQU0Q7H6CYVTwOjw7KZ4f_NlNDdZRSVtBptVF679JaUsmm6jsI_EmiN8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197457820</pqid></control><display><type>article</type><title>Finite element simulation on thermoforming acrylic sheets using dynamic explicit method</title><source>EZB-FREE-00999 freely available EZB journals</source><source>SAGE Journals</source><creator>DONG, Y ; LIN, R. J. T ; BHATTACHARYYA, D</creator><creatorcontrib>DONG, Y ; LIN, R. J. T ; BHATTACHARYYA, D</creatorcontrib><description>After optimising the critical material parameters obtained from hot tensile tests, a dynamic explicit software package, PAM-FORM™, is used to simulate the thermoforming process of polymeric sheet. A hyperelastic constitutive law based on the Mooney-Rivlin model has been successfully adopted to carry out the initial simulation on bubble inflation and to identify the material parameters. It has shown a good agreement of the deformation profile with the experimental results. In this paper, further investigations are concentrated on the thickness distribution analysis and the strain states of the bubble inflation along with a comparison to the results from kinematic Grid Strain Analysis (GSA). The numerical simulation of pressure forming of a cup, whose forming mechanisms have been explained reasonably well with the available Williams’ analytical solutions, is also presented. For a more academic case, the adaptive mesh refinement scheme has been employed in the simulation of thermoforming a complex-shaped rectangular container to well predict the wall thickness distribution. The final simulation results of the deformation at different stages of forming process and the analyses of final part geometry are also presented.</description><identifier>ISSN: 0967-3911</identifier><identifier>EISSN: 1478-2391</identifier><identifier>DOI: 10.1177/096739110601400310</identifier><language>eng</language><publisher>Shrewsbury: Rapra Technology</publisher><subject>Applied sciences ; Exact sciences and technology ; Machinery and processing ; Miscellaneous ; Moulding ; Plastics ; Polymer industry, paints, wood ; Technology of polymers</subject><ispartof>Polymers &amp; polymer composites, 2006-01, Vol.14 (3), p.307-328</ispartof><rights>2007 INIST-CNRS</rights><rights>COPYRIGHT 2006 Sage Publications Ltd. (UK)</rights><rights>Copyright Rapra Technology Limited 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-fd443bc6d94764f43420a36dcd0a28cdbf7c3e1341b8f365de45318dbf90cf3e3</citedby><cites>FETCH-LOGICAL-c374t-fd443bc6d94764f43420a36dcd0a28cdbf7c3e1341b8f365de45318dbf90cf3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17755880$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>DONG, Y</creatorcontrib><creatorcontrib>LIN, R. J. T</creatorcontrib><creatorcontrib>BHATTACHARYYA, D</creatorcontrib><title>Finite element simulation on thermoforming acrylic sheets using dynamic explicit method</title><title>Polymers &amp; polymer composites</title><description>After optimising the critical material parameters obtained from hot tensile tests, a dynamic explicit software package, PAM-FORM™, is used to simulate the thermoforming process of polymeric sheet. A hyperelastic constitutive law based on the Mooney-Rivlin model has been successfully adopted to carry out the initial simulation on bubble inflation and to identify the material parameters. It has shown a good agreement of the deformation profile with the experimental results. In this paper, further investigations are concentrated on the thickness distribution analysis and the strain states of the bubble inflation along with a comparison to the results from kinematic Grid Strain Analysis (GSA). The numerical simulation of pressure forming of a cup, whose forming mechanisms have been explained reasonably well with the available Williams’ analytical solutions, is also presented. For a more academic case, the adaptive mesh refinement scheme has been employed in the simulation of thermoforming a complex-shaped rectangular container to well predict the wall thickness distribution. The final simulation results of the deformation at different stages of forming process and the analyses of final part geometry are also presented.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Machinery and processing</subject><subject>Miscellaneous</subject><subject>Moulding</subject><subject>Plastics</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><issn>0967-3911</issn><issn>1478-2391</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkVFr2zAQx8XoYGnXL7AnM-jenEk62bIfS1jXQWAvG300inRqFGwplWRovv1kEih06EDwu99fnDhCvjC6ZkzK77RvJfSM0ZYyQSkw-oGsmJBdzQu-IqtFqBfjE7lO6UApZ23brMjTg_MuY4UjTuhzldw0jyq74KtSeY9xCjbEyfnnSul4Gp2u0h4xp2pOCzQnr6YC8fVYei5XE-Z9MJ_JR6vGhLeX-4b8ffjxZ_NYb3___LW539YapMi1NULATremF7IVVoDgVEFrtKGKd9rsrNSADATbdRbaxqBogHWF91RbQLgh387vHmN4mTHlYXJJ4zgqj2FOA-9BMgBaxK_vxEOYoy-zDayXopEdX6T1WXpWIw7O25Cj0uUYLH8MHq0r_J51tOk5F1AC_BzQMaQU0Q7H6CYVTwOjw7KZ4f_NlNDdZRSVtBptVF679JaUsmm6jsI_EmiN8A</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>DONG, Y</creator><creator>LIN, R. J. T</creator><creator>BHATTACHARYYA, D</creator><general>Rapra Technology</general><general>Sage Publications Ltd. (UK)</general><general>Sage Publications Ltd</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>EHMNL</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20060101</creationdate><title>Finite element simulation on thermoforming acrylic sheets using dynamic explicit method</title><author>DONG, Y ; LIN, R. J. T ; BHATTACHARYYA, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-fd443bc6d94764f43420a36dcd0a28cdbf7c3e1341b8f365de45318dbf90cf3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Machinery and processing</topic><topic>Miscellaneous</topic><topic>Moulding</topic><topic>Plastics</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DONG, Y</creatorcontrib><creatorcontrib>LIN, R. J. T</creatorcontrib><creatorcontrib>BHATTACHARYYA, D</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>UK &amp; Ireland Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Polymers &amp; polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DONG, Y</au><au>LIN, R. J. T</au><au>BHATTACHARYYA, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element simulation on thermoforming acrylic sheets using dynamic explicit method</atitle><jtitle>Polymers &amp; polymer composites</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>14</volume><issue>3</issue><spage>307</spage><epage>328</epage><pages>307-328</pages><issn>0967-3911</issn><eissn>1478-2391</eissn><abstract>After optimising the critical material parameters obtained from hot tensile tests, a dynamic explicit software package, PAM-FORM™, is used to simulate the thermoforming process of polymeric sheet. A hyperelastic constitutive law based on the Mooney-Rivlin model has been successfully adopted to carry out the initial simulation on bubble inflation and to identify the material parameters. It has shown a good agreement of the deformation profile with the experimental results. In this paper, further investigations are concentrated on the thickness distribution analysis and the strain states of the bubble inflation along with a comparison to the results from kinematic Grid Strain Analysis (GSA). The numerical simulation of pressure forming of a cup, whose forming mechanisms have been explained reasonably well with the available Williams’ analytical solutions, is also presented. For a more academic case, the adaptive mesh refinement scheme has been employed in the simulation of thermoforming a complex-shaped rectangular container to well predict the wall thickness distribution. The final simulation results of the deformation at different stages of forming process and the analyses of final part geometry are also presented.</abstract><cop>Shrewsbury</cop><pub>Rapra Technology</pub><doi>10.1177/096739110601400310</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0967-3911
ispartof Polymers & polymer composites, 2006-01, Vol.14 (3), p.307-328
issn 0967-3911
1478-2391
language eng
recordid cdi_proquest_miscellaneous_29371330
source EZB-FREE-00999 freely available EZB journals; SAGE Journals
subjects Applied sciences
Exact sciences and technology
Machinery and processing
Miscellaneous
Moulding
Plastics
Polymer industry, paints, wood
Technology of polymers
title Finite element simulation on thermoforming acrylic sheets using dynamic explicit method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T08%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20simulation%20on%20thermoforming%20acrylic%20sheets%20using%20dynamic%20explicit%20method&rft.jtitle=Polymers%20&%20polymer%20composites&rft.au=DONG,%20Y&rft.date=2006-01-01&rft.volume=14&rft.issue=3&rft.spage=307&rft.epage=328&rft.pages=307-328&rft.issn=0967-3911&rft.eissn=1478-2391&rft_id=info:doi/10.1177/096739110601400310&rft_dat=%3Cgale_proqu%3EA180592243%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197457820&rft_id=info:pmid/&rft_galeid=A180592243&rfr_iscdi=true