Monte-Carlo simulation of ionisation in self-induced ion plating (SIIP)

SIIP can be defined as the evaporation of a metallic target thanks to ion bombardment of a magnetron sputtering system. A numerical simulation model of the SIIP process has been already realized [A. Contino, V. Feldheim, P. Lybaert, B. Deweer, H. Cornil, October 2005, Modelling of continuous steel c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface & coatings technology 2006-10, Vol.201 (3), p.1845-1851
Hauptverfasser: Contino, Antonella, Feldheim, Véronique, Lybaert, Paul, Deweer, Benoît, Cornil, Hugues
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1851
container_issue 3
container_start_page 1845
container_title Surface & coatings technology
container_volume 201
creator Contino, Antonella
Feldheim, Véronique
Lybaert, Paul
Deweer, Benoît
Cornil, Hugues
description SIIP can be defined as the evaporation of a metallic target thanks to ion bombardment of a magnetron sputtering system. A numerical simulation model of the SIIP process has been already realized [A. Contino, V. Feldheim, P. Lybaert, B. Deweer, H. Cornil, October 2005, Modelling of continuous steel coating by self-induced ion plating (SIIP), Surface and Coatings Technology, Vol. 200, Issue 1–4, pp.898–903] in order to predict the thickness profile of the coating. The model was constituted of three coupled submodels: a magnetic model, a heat transfer model and an evaporation model. The comparison between the simulated results and the measurements showed that our results did not perfectly agree with the experimental values. This could be explained by the difficulty in doing the accurate measurements but also by simplifying assumptions introduced into the model. The purpose of the present work is to remove one of these assumptions: the use of a non-validated power law [Plasma Surface Engineering Corporation, Technology Note: Magnetron sputtering, Feb. 2003. ] to evaluate heat flux distribution (due to ion bombardment) on the target. To obtain an accurate ion bombardment heat flux distribution we compute the ions strike points distribution on the target surface using a Monte-Carlo method [T.E. Sheridan, M.J. Goeckner, and J. Goree, 1990. Model of energetic electron transport in magnetron discharges, J. Vac. Sci. Technol. A8(1) 30–37] and we assume that the heat flux is proportional to the number of ions colliding with the target. The computed heat distribution is compared with the power-law distribution used previously. The new distribution is more accurate and will be implemented in the future in the numerical simulation model previously developed to predict coating thickness.
doi_str_mv 10.1016/j.surfcoat.2006.03.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29370041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0257897206002428</els_id><sourcerecordid>29370041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-31aea89b81320cde6dc8120e8a1224e69f37d855ceccc91d4ef61b9e6421edf63</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7-BelF0UPr5KMfuSmLrgsrCuo5ZNOJZOk2a9IK_ntbVvGop5dhnncGHkJOKWQUaHG1zmIfrPG6yxhAkQHPAOQemdCqlCnnotwnE2B5mVayZIfkKMY1ANBSigmZP_i2w3SmQ-OT6DZ9ozvn28TbZAgXd5Nrk4iNTV1b9wbrcZVsR7J9Sy6eF4uny2NyYHUT8eQ7p-T17vZldp8uH-eL2c0yNQJEl3KqUVdyVVHOwNRY1KaiDLDSlDGBhbS8rKs8N2iMkbQWaAu6klgIRrG2BZ-S893dbfDvPcZObVw02DS6Rd9HxSQvAQT9B8hKQWk-gMUONMHHGNCqbXAbHT4VBTUKVmv1I1iNghVwNQgeimffH3Q0urFBt8bF33bFZc6kGLjrHYeDlw-HQUXjsB08uoCmU7V3f736AqlzlGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29274115</pqid></control><display><type>article</type><title>Monte-Carlo simulation of ionisation in self-induced ion plating (SIIP)</title><source>Access via ScienceDirect (Elsevier)</source><creator>Contino, Antonella ; Feldheim, Véronique ; Lybaert, Paul ; Deweer, Benoît ; Cornil, Hugues</creator><creatorcontrib>Contino, Antonella ; Feldheim, Véronique ; Lybaert, Paul ; Deweer, Benoît ; Cornil, Hugues</creatorcontrib><description>SIIP can be defined as the evaporation of a metallic target thanks to ion bombardment of a magnetron sputtering system. A numerical simulation model of the SIIP process has been already realized [A. Contino, V. Feldheim, P. Lybaert, B. Deweer, H. Cornil, October 2005, Modelling of continuous steel coating by self-induced ion plating (SIIP), Surface and Coatings Technology, Vol. 200, Issue 1–4, pp.898–903] in order to predict the thickness profile of the coating. The model was constituted of three coupled submodels: a magnetic model, a heat transfer model and an evaporation model. The comparison between the simulated results and the measurements showed that our results did not perfectly agree with the experimental values. This could be explained by the difficulty in doing the accurate measurements but also by simplifying assumptions introduced into the model. The purpose of the present work is to remove one of these assumptions: the use of a non-validated power law [Plasma Surface Engineering Corporation, Technology Note: Magnetron sputtering, Feb. 2003. &lt;http//www.msi-pse.com/magnetron_sputtering.htm&gt;] to evaluate heat flux distribution (due to ion bombardment) on the target. To obtain an accurate ion bombardment heat flux distribution we compute the ions strike points distribution on the target surface using a Monte-Carlo method [T.E. Sheridan, M.J. Goeckner, and J. Goree, 1990. Model of energetic electron transport in magnetron discharges, J. Vac. Sci. Technol. A8(1) 30–37] and we assume that the heat flux is proportional to the number of ions colliding with the target. The computed heat distribution is compared with the power-law distribution used previously. The new distribution is more accurate and will be implemented in the future in the numerical simulation model previously developed to predict coating thickness.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><identifier>DOI: 10.1016/j.surfcoat.2006.03.009</identifier><identifier>CODEN: SCTEEJ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Exact sciences and technology ; Ion plating ; Ionisation ; Magnetron ; Metals. Metallurgy ; Monte-Carlo ; Production techniques ; Sputtering ; Surface treatment ; Vacuum evaporation</subject><ispartof>Surface &amp; coatings technology, 2006-10, Vol.201 (3), p.1845-1851</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-31aea89b81320cde6dc8120e8a1224e69f37d855ceccc91d4ef61b9e6421edf63</citedby><cites>FETCH-LOGICAL-c404t-31aea89b81320cde6dc8120e8a1224e69f37d855ceccc91d4ef61b9e6421edf63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.surfcoat.2006.03.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18395294$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Contino, Antonella</creatorcontrib><creatorcontrib>Feldheim, Véronique</creatorcontrib><creatorcontrib>Lybaert, Paul</creatorcontrib><creatorcontrib>Deweer, Benoît</creatorcontrib><creatorcontrib>Cornil, Hugues</creatorcontrib><title>Monte-Carlo simulation of ionisation in self-induced ion plating (SIIP)</title><title>Surface &amp; coatings technology</title><description>SIIP can be defined as the evaporation of a metallic target thanks to ion bombardment of a magnetron sputtering system. A numerical simulation model of the SIIP process has been already realized [A. Contino, V. Feldheim, P. Lybaert, B. Deweer, H. Cornil, October 2005, Modelling of continuous steel coating by self-induced ion plating (SIIP), Surface and Coatings Technology, Vol. 200, Issue 1–4, pp.898–903] in order to predict the thickness profile of the coating. The model was constituted of three coupled submodels: a magnetic model, a heat transfer model and an evaporation model. The comparison between the simulated results and the measurements showed that our results did not perfectly agree with the experimental values. This could be explained by the difficulty in doing the accurate measurements but also by simplifying assumptions introduced into the model. The purpose of the present work is to remove one of these assumptions: the use of a non-validated power law [Plasma Surface Engineering Corporation, Technology Note: Magnetron sputtering, Feb. 2003. &lt;http//www.msi-pse.com/magnetron_sputtering.htm&gt;] to evaluate heat flux distribution (due to ion bombardment) on the target. To obtain an accurate ion bombardment heat flux distribution we compute the ions strike points distribution on the target surface using a Monte-Carlo method [T.E. Sheridan, M.J. Goeckner, and J. Goree, 1990. Model of energetic electron transport in magnetron discharges, J. Vac. Sci. Technol. A8(1) 30–37] and we assume that the heat flux is proportional to the number of ions colliding with the target. The computed heat distribution is compared with the power-law distribution used previously. The new distribution is more accurate and will be implemented in the future in the numerical simulation model previously developed to predict coating thickness.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Ion plating</subject><subject>Ionisation</subject><subject>Magnetron</subject><subject>Metals. Metallurgy</subject><subject>Monte-Carlo</subject><subject>Production techniques</subject><subject>Sputtering</subject><subject>Surface treatment</subject><subject>Vacuum evaporation</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMouK7-BelF0UPr5KMfuSmLrgsrCuo5ZNOJZOk2a9IK_ntbVvGop5dhnncGHkJOKWQUaHG1zmIfrPG6yxhAkQHPAOQemdCqlCnnotwnE2B5mVayZIfkKMY1ANBSigmZP_i2w3SmQ-OT6DZ9ozvn28TbZAgXd5Nrk4iNTV1b9wbrcZVsR7J9Sy6eF4uny2NyYHUT8eQ7p-T17vZldp8uH-eL2c0yNQJEl3KqUVdyVVHOwNRY1KaiDLDSlDGBhbS8rKs8N2iMkbQWaAu6klgIRrG2BZ-S893dbfDvPcZObVw02DS6Rd9HxSQvAQT9B8hKQWk-gMUONMHHGNCqbXAbHT4VBTUKVmv1I1iNghVwNQgeimffH3Q0urFBt8bF33bFZc6kGLjrHYeDlw-HQUXjsB08uoCmU7V3f736AqlzlGc</recordid><startdate>20061005</startdate><enddate>20061005</enddate><creator>Contino, Antonella</creator><creator>Feldheim, Véronique</creator><creator>Lybaert, Paul</creator><creator>Deweer, Benoît</creator><creator>Cornil, Hugues</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>20061005</creationdate><title>Monte-Carlo simulation of ionisation in self-induced ion plating (SIIP)</title><author>Contino, Antonella ; Feldheim, Véronique ; Lybaert, Paul ; Deweer, Benoît ; Cornil, Hugues</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-31aea89b81320cde6dc8120e8a1224e69f37d855ceccc91d4ef61b9e6421edf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Ion plating</topic><topic>Ionisation</topic><topic>Magnetron</topic><topic>Metals. Metallurgy</topic><topic>Monte-Carlo</topic><topic>Production techniques</topic><topic>Sputtering</topic><topic>Surface treatment</topic><topic>Vacuum evaporation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Contino, Antonella</creatorcontrib><creatorcontrib>Feldheim, Véronique</creatorcontrib><creatorcontrib>Lybaert, Paul</creatorcontrib><creatorcontrib>Deweer, Benoît</creatorcontrib><creatorcontrib>Cornil, Hugues</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Contino, Antonella</au><au>Feldheim, Véronique</au><au>Lybaert, Paul</au><au>Deweer, Benoît</au><au>Cornil, Hugues</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte-Carlo simulation of ionisation in self-induced ion plating (SIIP)</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2006-10-05</date><risdate>2006</risdate><volume>201</volume><issue>3</issue><spage>1845</spage><epage>1851</epage><pages>1845-1851</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><coden>SCTEEJ</coden><abstract>SIIP can be defined as the evaporation of a metallic target thanks to ion bombardment of a magnetron sputtering system. A numerical simulation model of the SIIP process has been already realized [A. Contino, V. Feldheim, P. Lybaert, B. Deweer, H. Cornil, October 2005, Modelling of continuous steel coating by self-induced ion plating (SIIP), Surface and Coatings Technology, Vol. 200, Issue 1–4, pp.898–903] in order to predict the thickness profile of the coating. The model was constituted of three coupled submodels: a magnetic model, a heat transfer model and an evaporation model. The comparison between the simulated results and the measurements showed that our results did not perfectly agree with the experimental values. This could be explained by the difficulty in doing the accurate measurements but also by simplifying assumptions introduced into the model. The purpose of the present work is to remove one of these assumptions: the use of a non-validated power law [Plasma Surface Engineering Corporation, Technology Note: Magnetron sputtering, Feb. 2003. &lt;http//www.msi-pse.com/magnetron_sputtering.htm&gt;] to evaluate heat flux distribution (due to ion bombardment) on the target. To obtain an accurate ion bombardment heat flux distribution we compute the ions strike points distribution on the target surface using a Monte-Carlo method [T.E. Sheridan, M.J. Goeckner, and J. Goree, 1990. Model of energetic electron transport in magnetron discharges, J. Vac. Sci. Technol. A8(1) 30–37] and we assume that the heat flux is proportional to the number of ions colliding with the target. The computed heat distribution is compared with the power-law distribution used previously. The new distribution is more accurate and will be implemented in the future in the numerical simulation model previously developed to predict coating thickness.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.surfcoat.2006.03.009</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2006-10, Vol.201 (3), p.1845-1851
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_miscellaneous_29370041
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Exact sciences and technology
Ion plating
Ionisation
Magnetron
Metals. Metallurgy
Monte-Carlo
Production techniques
Sputtering
Surface treatment
Vacuum evaporation
title Monte-Carlo simulation of ionisation in self-induced ion plating (SIIP)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A14%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte-Carlo%20simulation%20of%20ionisation%20in%20self-induced%20ion%20plating%20(SIIP)&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Contino,%20Antonella&rft.date=2006-10-05&rft.volume=201&rft.issue=3&rft.spage=1845&rft.epage=1851&rft.pages=1845-1851&rft.issn=0257-8972&rft.eissn=1879-3347&rft.coden=SCTEEJ&rft_id=info:doi/10.1016/j.surfcoat.2006.03.009&rft_dat=%3Cproquest_cross%3E29370041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29274115&rft_id=info:pmid/&rft_els_id=S0257897206002428&rfr_iscdi=true