Boundary value problems for a compressible Stokes system in bounded domains in R(n)
Some boundary value problems of Dirichlet and Neumann types ssociated with a compressible Stokes system are studied from the point of view of the theory of hydrodynamic potentials. Existence and uniqueness results as well as boundary integral representations of classical solutions are given in the c...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 2007-04, Vol.201 (1), p.128-145 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 145 |
---|---|
container_issue | 1 |
container_start_page | 128 |
container_title | Journal of computational and applied mathematics |
container_volume | 201 |
creator | Kohr, M |
description | Some boundary value problems of Dirichlet and Neumann types ssociated with a compressible Stokes system are studied from the point of view of the theory of hydrodynamic potentials. Existence and uniqueness results as well as boundary integral representations of classical solutions are given in the case of bounded domains in Rn having compact but not connected boundaries of class C1,@a, 0 < @a@?1. |
doi_str_mv | 10.1016/j.cam.2006.02.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29369170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29369170</sourcerecordid><originalsourceid>FETCH-LOGICAL-p101t-e09bae65080c057575b123e7c16f3a454017e1428bce08f84346bc2152918a263</originalsourceid><addsrcrecordid>eNotT01LxDAUzEHBdfUHeMtJ9ND68tGkPeriFywIrp6XJPsKXZum9rXC_nu7KHMYmGGGGcauBOQChLnb58HFXAKYHGQOoE_YApS1GWhpz9g50R5msxJ6wTYPaep2bjjwH9dOyPsh-RYj8ToN3PGQYj8gUTOLfDOmLyROBxox8qbj_pjFHd-l6JqOjtL7TXd7wU5r1xJe_vOSfT49fqxesvXb8-vqfp3188wxQ6i8Q1NACQEKO8MLqdAGYWrldKFBWBRalj4glHWplTY-SFHISpROGrVk13-98-jvCWncxoYCtq3rME20lZWaT1pQv_laUSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29369170</pqid></control><display><type>article</type><title>Boundary value problems for a compressible Stokes system in bounded domains in R(n)</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kohr, M</creator><creatorcontrib>Kohr, M</creatorcontrib><description>Some boundary value problems of Dirichlet and Neumann types ssociated with a compressible Stokes system are studied from the point of view of the theory of hydrodynamic potentials. Existence and uniqueness results as well as boundary integral representations of classical solutions are given in the case of bounded domains in Rn having compact but not connected boundaries of class C1,@a, 0 < @a@?1.</description><identifier>ISSN: 0377-0427</identifier><identifier>DOI: 10.1016/j.cam.2006.02.004</identifier><language>eng</language><ispartof>Journal of computational and applied mathematics, 2007-04, Vol.201 (1), p.128-145</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kohr, M</creatorcontrib><title>Boundary value problems for a compressible Stokes system in bounded domains in R(n)</title><title>Journal of computational and applied mathematics</title><description>Some boundary value problems of Dirichlet and Neumann types ssociated with a compressible Stokes system are studied from the point of view of the theory of hydrodynamic potentials. Existence and uniqueness results as well as boundary integral representations of classical solutions are given in the case of bounded domains in Rn having compact but not connected boundaries of class C1,@a, 0 < @a@?1.</description><issn>0377-0427</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotT01LxDAUzEHBdfUHeMtJ9ND68tGkPeriFywIrp6XJPsKXZum9rXC_nu7KHMYmGGGGcauBOQChLnb58HFXAKYHGQOoE_YApS1GWhpz9g50R5msxJ6wTYPaep2bjjwH9dOyPsh-RYj8ToN3PGQYj8gUTOLfDOmLyROBxox8qbj_pjFHd-l6JqOjtL7TXd7wU5r1xJe_vOSfT49fqxesvXb8-vqfp3188wxQ6i8Q1NACQEKO8MLqdAGYWrldKFBWBRalj4glHWplTY-SFHISpROGrVk13-98-jvCWncxoYCtq3rME20lZWaT1pQv_laUSE</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Kohr, M</creator><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070401</creationdate><title>Boundary value problems for a compressible Stokes system in bounded domains in R(n)</title><author>Kohr, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p101t-e09bae65080c057575b123e7c16f3a454017e1428bce08f84346bc2152918a263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kohr, M</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kohr, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary value problems for a compressible Stokes system in bounded domains in R(n)</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>201</volume><issue>1</issue><spage>128</spage><epage>145</epage><pages>128-145</pages><issn>0377-0427</issn><abstract>Some boundary value problems of Dirichlet and Neumann types ssociated with a compressible Stokes system are studied from the point of view of the theory of hydrodynamic potentials. Existence and uniqueness results as well as boundary integral representations of classical solutions are given in the case of bounded domains in Rn having compact but not connected boundaries of class C1,@a, 0 < @a@?1.</abstract><doi>10.1016/j.cam.2006.02.004</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2007-04, Vol.201 (1), p.128-145 |
issn | 0377-0427 |
language | eng |
recordid | cdi_proquest_miscellaneous_29369170 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
title | Boundary value problems for a compressible Stokes system in bounded domains in R(n) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A27%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20value%20problems%20for%20a%20compressible%20Stokes%20system%20in%20bounded%20domains%20in%20R(n)&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Kohr,%20M&rft.date=2007-04-01&rft.volume=201&rft.issue=1&rft.spage=128&rft.epage=145&rft.pages=128-145&rft.issn=0377-0427&rft_id=info:doi/10.1016/j.cam.2006.02.004&rft_dat=%3Cproquest%3E29369170%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29369170&rft_id=info:pmid/&rfr_iscdi=true |