Boundary value problems for a compressible Stokes system in bounded domains in R(n)

Some boundary value problems of Dirichlet and Neumann types ssociated with a compressible Stokes system are studied from the point of view of the theory of hydrodynamic potentials. Existence and uniqueness results as well as boundary integral representations of classical solutions are given in the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2007-04, Vol.201 (1), p.128-145
1. Verfasser: Kohr, M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 145
container_issue 1
container_start_page 128
container_title Journal of computational and applied mathematics
container_volume 201
creator Kohr, M
description Some boundary value problems of Dirichlet and Neumann types ssociated with a compressible Stokes system are studied from the point of view of the theory of hydrodynamic potentials. Existence and uniqueness results as well as boundary integral representations of classical solutions are given in the case of bounded domains in Rn having compact but not connected boundaries of class C1,@a, 0 < @a@?1.
doi_str_mv 10.1016/j.cam.2006.02.004
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_29369170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29369170</sourcerecordid><originalsourceid>FETCH-LOGICAL-p101t-e09bae65080c057575b123e7c16f3a454017e1428bce08f84346bc2152918a263</originalsourceid><addsrcrecordid>eNotT01LxDAUzEHBdfUHeMtJ9ND68tGkPeriFywIrp6XJPsKXZum9rXC_nu7KHMYmGGGGcauBOQChLnb58HFXAKYHGQOoE_YApS1GWhpz9g50R5msxJ6wTYPaep2bjjwH9dOyPsh-RYj8ToN3PGQYj8gUTOLfDOmLyROBxox8qbj_pjFHd-l6JqOjtL7TXd7wU5r1xJe_vOSfT49fqxesvXb8-vqfp3188wxQ6i8Q1NACQEKO8MLqdAGYWrldKFBWBRalj4glHWplTY-SFHISpROGrVk13-98-jvCWncxoYCtq3rME20lZWaT1pQv_laUSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29369170</pqid></control><display><type>article</type><title>Boundary value problems for a compressible Stokes system in bounded domains in R(n)</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kohr, M</creator><creatorcontrib>Kohr, M</creatorcontrib><description>Some boundary value problems of Dirichlet and Neumann types ssociated with a compressible Stokes system are studied from the point of view of the theory of hydrodynamic potentials. Existence and uniqueness results as well as boundary integral representations of classical solutions are given in the case of bounded domains in Rn having compact but not connected boundaries of class C1,@a, 0 &lt; @a@?1.</description><identifier>ISSN: 0377-0427</identifier><identifier>DOI: 10.1016/j.cam.2006.02.004</identifier><language>eng</language><ispartof>Journal of computational and applied mathematics, 2007-04, Vol.201 (1), p.128-145</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kohr, M</creatorcontrib><title>Boundary value problems for a compressible Stokes system in bounded domains in R(n)</title><title>Journal of computational and applied mathematics</title><description>Some boundary value problems of Dirichlet and Neumann types ssociated with a compressible Stokes system are studied from the point of view of the theory of hydrodynamic potentials. Existence and uniqueness results as well as boundary integral representations of classical solutions are given in the case of bounded domains in Rn having compact but not connected boundaries of class C1,@a, 0 &lt; @a@?1.</description><issn>0377-0427</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNotT01LxDAUzEHBdfUHeMtJ9ND68tGkPeriFywIrp6XJPsKXZum9rXC_nu7KHMYmGGGGcauBOQChLnb58HFXAKYHGQOoE_YApS1GWhpz9g50R5msxJ6wTYPaep2bjjwH9dOyPsh-RYj8ToN3PGQYj8gUTOLfDOmLyROBxox8qbj_pjFHd-l6JqOjtL7TXd7wU5r1xJe_vOSfT49fqxesvXb8-vqfp3188wxQ6i8Q1NACQEKO8MLqdAGYWrldKFBWBRalj4glHWplTY-SFHISpROGrVk13-98-jvCWncxoYCtq3rME20lZWaT1pQv_laUSE</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Kohr, M</creator><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070401</creationdate><title>Boundary value problems for a compressible Stokes system in bounded domains in R(n)</title><author>Kohr, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p101t-e09bae65080c057575b123e7c16f3a454017e1428bce08f84346bc2152918a263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kohr, M</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kohr, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary value problems for a compressible Stokes system in bounded domains in R(n)</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>201</volume><issue>1</issue><spage>128</spage><epage>145</epage><pages>128-145</pages><issn>0377-0427</issn><abstract>Some boundary value problems of Dirichlet and Neumann types ssociated with a compressible Stokes system are studied from the point of view of the theory of hydrodynamic potentials. Existence and uniqueness results as well as boundary integral representations of classical solutions are given in the case of bounded domains in Rn having compact but not connected boundaries of class C1,@a, 0 &lt; @a@?1.</abstract><doi>10.1016/j.cam.2006.02.004</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2007-04, Vol.201 (1), p.128-145
issn 0377-0427
language eng
recordid cdi_proquest_miscellaneous_29369170
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
title Boundary value problems for a compressible Stokes system in bounded domains in R(n)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A27%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20value%20problems%20for%20a%20compressible%20Stokes%20system%20in%20bounded%20domains%20in%20R(n)&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Kohr,%20M&rft.date=2007-04-01&rft.volume=201&rft.issue=1&rft.spage=128&rft.epage=145&rft.pages=128-145&rft.issn=0377-0427&rft_id=info:doi/10.1016/j.cam.2006.02.004&rft_dat=%3Cproquest%3E29369170%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29369170&rft_id=info:pmid/&rfr_iscdi=true