Modelling of lossy curved surfaces in the 3-D frequency-domain finite-difference methods

A conformal first‐order or Leontovic surface‐impedance boundary condition (SIBC) for the modelling of fully three‐dimensional (3‐D) lossy curved surfaces in a Cartesian grid is presented for the frequency‐domain finite‐difference (FD) methods. The impedance boundary condition is applied to auxiliary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of numerical modelling 2006-09, Vol.19 (5), p.421-431
Hauptverfasser: Mäkinen, Riku M., De Gersem, Herbert, Weiland, Thomas, Kivikoski, Markku A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 431
container_issue 5
container_start_page 421
container_title International journal of numerical modelling
container_volume 19
creator Mäkinen, Riku M.
De Gersem, Herbert
Weiland, Thomas
Kivikoski, Markku A.
description A conformal first‐order or Leontovic surface‐impedance boundary condition (SIBC) for the modelling of fully three‐dimensional (3‐D) lossy curved surfaces in a Cartesian grid is presented for the frequency‐domain finite‐difference (FD) methods. The impedance boundary condition is applied to auxiliary tangential electric and magnetic field components defined at the curved surface. The auxiliary components are subsequently eliminated from the formulation resulting in a modification of the local permeability value at boundary cells, allowing the curved 3‐D surface to be described in terms of Cartesian grid components. The proposed formulation can be applied to model skin‐effect loss in time‐harmonic driven problems. In addition, the impedance matrix can be used as a post‐processor for the eigenmode solver to calculate the wall loss. The validity of the proposed model is evaluated by investigating the quality factors of cylindrical and spherical cavity resonators. The results are compared with analytic solutions and numerical reference data calculated with the commercial software package CST Microwave Studio™ (MWS). The convergence rate of the results is shown to be of second‐order for smooth curved metal surfaces. The overall accuracy of the approach is comparable to that of CST MWS™. Copyright © 2006 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/jnm.620
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29366653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29366653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3300-dd11d05c4b83dac8454bfd55dfbb856f4fcb5582aa32d442bb1955a66970b96d3</originalsourceid><addsrcrecordid>eNp10LlOAzEQBmALgUQ4xCu4ggI5-Fh7d0sUIIBCaIKgs7w-iMMewd4AeXuMFtFRTfF_Gs38AJwQPCYY04tV24wFxTtgRHBZIkJxtgtGuCgzxFiO98FBjCuMMSOcjsDLQ2dsXfv2FXYO1l2MW6g34cMaGDfBKW0j9C3slxYydAVdsO8b2-otMl2jUuB863uLjHfOhhRY2Nh-2Zl4BPacqqM9_p2H4OnmejG5RbPH6d3kcoY0YxgjYwgxmOusKphRush4VjnDuXFVVXDhMqcrzguqFKMmy2hVkZJzJUSZ46oUhh2C02HvOnTptNjLxkedXlKt7TZR0pIJIThL8GyAOqQvg3VyHXyjwlYSLH-ak6k5mZpL8nyQn7622_-YvJ8_DBoN2sfefv1pFd6kyFnO5fN8KstcXE3pYibn7BsjGn5-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29366653</pqid></control><display><type>article</type><title>Modelling of lossy curved surfaces in the 3-D frequency-domain finite-difference methods</title><source>Wiley Journals</source><creator>Mäkinen, Riku M. ; De Gersem, Herbert ; Weiland, Thomas ; Kivikoski, Markku A.</creator><creatorcontrib>Mäkinen, Riku M. ; De Gersem, Herbert ; Weiland, Thomas ; Kivikoski, Markku A.</creatorcontrib><description>A conformal first‐order or Leontovic surface‐impedance boundary condition (SIBC) for the modelling of fully three‐dimensional (3‐D) lossy curved surfaces in a Cartesian grid is presented for the frequency‐domain finite‐difference (FD) methods. The impedance boundary condition is applied to auxiliary tangential electric and magnetic field components defined at the curved surface. The auxiliary components are subsequently eliminated from the formulation resulting in a modification of the local permeability value at boundary cells, allowing the curved 3‐D surface to be described in terms of Cartesian grid components. The proposed formulation can be applied to model skin‐effect loss in time‐harmonic driven problems. In addition, the impedance matrix can be used as a post‐processor for the eigenmode solver to calculate the wall loss. The validity of the proposed model is evaluated by investigating the quality factors of cylindrical and spherical cavity resonators. The results are compared with analytic solutions and numerical reference data calculated with the commercial software package CST Microwave Studio™ (MWS). The convergence rate of the results is shown to be of second‐order for smooth curved metal surfaces. The overall accuracy of the approach is comparable to that of CST MWS™. Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0894-3370</identifier><identifier>EISSN: 1099-1204</identifier><identifier>DOI: 10.1002/jnm.620</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>finite integration technique ; finite-difference methods ; impedance boundary conditions ; locally conformal grids ; losses</subject><ispartof>International journal of numerical modelling, 2006-09, Vol.19 (5), p.421-431</ispartof><rights>Copyright © 2006 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3300-dd11d05c4b83dac8454bfd55dfbb856f4fcb5582aa32d442bb1955a66970b96d3</citedby><cites>FETCH-LOGICAL-c3300-dd11d05c4b83dac8454bfd55dfbb856f4fcb5582aa32d442bb1955a66970b96d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnm.620$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnm.620$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Mäkinen, Riku M.</creatorcontrib><creatorcontrib>De Gersem, Herbert</creatorcontrib><creatorcontrib>Weiland, Thomas</creatorcontrib><creatorcontrib>Kivikoski, Markku A.</creatorcontrib><title>Modelling of lossy curved surfaces in the 3-D frequency-domain finite-difference methods</title><title>International journal of numerical modelling</title><addtitle>Int. J. Numer. Model</addtitle><description>A conformal first‐order or Leontovic surface‐impedance boundary condition (SIBC) for the modelling of fully three‐dimensional (3‐D) lossy curved surfaces in a Cartesian grid is presented for the frequency‐domain finite‐difference (FD) methods. The impedance boundary condition is applied to auxiliary tangential electric and magnetic field components defined at the curved surface. The auxiliary components are subsequently eliminated from the formulation resulting in a modification of the local permeability value at boundary cells, allowing the curved 3‐D surface to be described in terms of Cartesian grid components. The proposed formulation can be applied to model skin‐effect loss in time‐harmonic driven problems. In addition, the impedance matrix can be used as a post‐processor for the eigenmode solver to calculate the wall loss. The validity of the proposed model is evaluated by investigating the quality factors of cylindrical and spherical cavity resonators. The results are compared with analytic solutions and numerical reference data calculated with the commercial software package CST Microwave Studio™ (MWS). The convergence rate of the results is shown to be of second‐order for smooth curved metal surfaces. The overall accuracy of the approach is comparable to that of CST MWS™. Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><subject>finite integration technique</subject><subject>finite-difference methods</subject><subject>impedance boundary conditions</subject><subject>locally conformal grids</subject><subject>losses</subject><issn>0894-3370</issn><issn>1099-1204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp10LlOAzEQBmALgUQ4xCu4ggI5-Fh7d0sUIIBCaIKgs7w-iMMewd4AeXuMFtFRTfF_Gs38AJwQPCYY04tV24wFxTtgRHBZIkJxtgtGuCgzxFiO98FBjCuMMSOcjsDLQ2dsXfv2FXYO1l2MW6g34cMaGDfBKW0j9C3slxYydAVdsO8b2-otMl2jUuB863uLjHfOhhRY2Nh-2Zl4BPacqqM9_p2H4OnmejG5RbPH6d3kcoY0YxgjYwgxmOusKphRush4VjnDuXFVVXDhMqcrzguqFKMmy2hVkZJzJUSZ46oUhh2C02HvOnTptNjLxkedXlKt7TZR0pIJIThL8GyAOqQvg3VyHXyjwlYSLH-ak6k5mZpL8nyQn7622_-YvJ8_DBoN2sfefv1pFd6kyFnO5fN8KstcXE3pYibn7BsjGn5-</recordid><startdate>200609</startdate><enddate>200609</enddate><creator>Mäkinen, Riku M.</creator><creator>De Gersem, Herbert</creator><creator>Weiland, Thomas</creator><creator>Kivikoski, Markku A.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200609</creationdate><title>Modelling of lossy curved surfaces in the 3-D frequency-domain finite-difference methods</title><author>Mäkinen, Riku M. ; De Gersem, Herbert ; Weiland, Thomas ; Kivikoski, Markku A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3300-dd11d05c4b83dac8454bfd55dfbb856f4fcb5582aa32d442bb1955a66970b96d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>finite integration technique</topic><topic>finite-difference methods</topic><topic>impedance boundary conditions</topic><topic>locally conformal grids</topic><topic>losses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mäkinen, Riku M.</creatorcontrib><creatorcontrib>De Gersem, Herbert</creatorcontrib><creatorcontrib>Weiland, Thomas</creatorcontrib><creatorcontrib>Kivikoski, Markku A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of numerical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mäkinen, Riku M.</au><au>De Gersem, Herbert</au><au>Weiland, Thomas</au><au>Kivikoski, Markku A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of lossy curved surfaces in the 3-D frequency-domain finite-difference methods</atitle><jtitle>International journal of numerical modelling</jtitle><addtitle>Int. J. Numer. Model</addtitle><date>2006-09</date><risdate>2006</risdate><volume>19</volume><issue>5</issue><spage>421</spage><epage>431</epage><pages>421-431</pages><issn>0894-3370</issn><eissn>1099-1204</eissn><abstract>A conformal first‐order or Leontovic surface‐impedance boundary condition (SIBC) for the modelling of fully three‐dimensional (3‐D) lossy curved surfaces in a Cartesian grid is presented for the frequency‐domain finite‐difference (FD) methods. The impedance boundary condition is applied to auxiliary tangential electric and magnetic field components defined at the curved surface. The auxiliary components are subsequently eliminated from the formulation resulting in a modification of the local permeability value at boundary cells, allowing the curved 3‐D surface to be described in terms of Cartesian grid components. The proposed formulation can be applied to model skin‐effect loss in time‐harmonic driven problems. In addition, the impedance matrix can be used as a post‐processor for the eigenmode solver to calculate the wall loss. The validity of the proposed model is evaluated by investigating the quality factors of cylindrical and spherical cavity resonators. The results are compared with analytic solutions and numerical reference data calculated with the commercial software package CST Microwave Studio™ (MWS). The convergence rate of the results is shown to be of second‐order for smooth curved metal surfaces. The overall accuracy of the approach is comparable to that of CST MWS™. Copyright © 2006 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jnm.620</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-3370
ispartof International journal of numerical modelling, 2006-09, Vol.19 (5), p.421-431
issn 0894-3370
1099-1204
language eng
recordid cdi_proquest_miscellaneous_29366653
source Wiley Journals
subjects finite integration technique
finite-difference methods
impedance boundary conditions
locally conformal grids
losses
title Modelling of lossy curved surfaces in the 3-D frequency-domain finite-difference methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20lossy%20curved%20surfaces%20in%20the%203-D%20frequency-domain%20finite-difference%20methods&rft.jtitle=International%20journal%20of%20numerical%20modelling&rft.au=M%C3%A4kinen,%20Riku%20M.&rft.date=2006-09&rft.volume=19&rft.issue=5&rft.spage=421&rft.epage=431&rft.pages=421-431&rft.issn=0894-3370&rft.eissn=1099-1204&rft_id=info:doi/10.1002/jnm.620&rft_dat=%3Cproquest_cross%3E29366653%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29366653&rft_id=info:pmid/&rfr_iscdi=true