Modelling of lossy curved surfaces in the 3-D frequency-domain finite-difference methods
A conformal first‐order or Leontovic surface‐impedance boundary condition (SIBC) for the modelling of fully three‐dimensional (3‐D) lossy curved surfaces in a Cartesian grid is presented for the frequency‐domain finite‐difference (FD) methods. The impedance boundary condition is applied to auxiliary...
Gespeichert in:
Veröffentlicht in: | International journal of numerical modelling 2006-09, Vol.19 (5), p.421-431 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 431 |
---|---|
container_issue | 5 |
container_start_page | 421 |
container_title | International journal of numerical modelling |
container_volume | 19 |
creator | Mäkinen, Riku M. De Gersem, Herbert Weiland, Thomas Kivikoski, Markku A. |
description | A conformal first‐order or Leontovic surface‐impedance boundary condition (SIBC) for the modelling of fully three‐dimensional (3‐D) lossy curved surfaces in a Cartesian grid is presented for the frequency‐domain finite‐difference (FD) methods. The impedance boundary condition is applied to auxiliary tangential electric and magnetic field components defined at the curved surface. The auxiliary components are subsequently eliminated from the formulation resulting in a modification of the local permeability value at boundary cells, allowing the curved 3‐D surface to be described in terms of Cartesian grid components. The proposed formulation can be applied to model skin‐effect loss in time‐harmonic driven problems. In addition, the impedance matrix can be used as a post‐processor for the eigenmode solver to calculate the wall loss.
The validity of the proposed model is evaluated by investigating the quality factors of cylindrical and spherical cavity resonators. The results are compared with analytic solutions and numerical reference data calculated with the commercial software package CST Microwave Studio™ (MWS). The convergence rate of the results is shown to be of second‐order for smooth curved metal surfaces. The overall accuracy of the approach is comparable to that of CST MWS™. Copyright © 2006 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/jnm.620 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29366653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29366653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3300-dd11d05c4b83dac8454bfd55dfbb856f4fcb5582aa32d442bb1955a66970b96d3</originalsourceid><addsrcrecordid>eNp10LlOAzEQBmALgUQ4xCu4ggI5-Fh7d0sUIIBCaIKgs7w-iMMewd4AeXuMFtFRTfF_Gs38AJwQPCYY04tV24wFxTtgRHBZIkJxtgtGuCgzxFiO98FBjCuMMSOcjsDLQ2dsXfv2FXYO1l2MW6g34cMaGDfBKW0j9C3slxYydAVdsO8b2-otMl2jUuB863uLjHfOhhRY2Nh-2Zl4BPacqqM9_p2H4OnmejG5RbPH6d3kcoY0YxgjYwgxmOusKphRush4VjnDuXFVVXDhMqcrzguqFKMmy2hVkZJzJUSZ46oUhh2C02HvOnTptNjLxkedXlKt7TZR0pIJIThL8GyAOqQvg3VyHXyjwlYSLH-ak6k5mZpL8nyQn7622_-YvJ8_DBoN2sfefv1pFd6kyFnO5fN8KstcXE3pYibn7BsjGn5-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29366653</pqid></control><display><type>article</type><title>Modelling of lossy curved surfaces in the 3-D frequency-domain finite-difference methods</title><source>Wiley Journals</source><creator>Mäkinen, Riku M. ; De Gersem, Herbert ; Weiland, Thomas ; Kivikoski, Markku A.</creator><creatorcontrib>Mäkinen, Riku M. ; De Gersem, Herbert ; Weiland, Thomas ; Kivikoski, Markku A.</creatorcontrib><description>A conformal first‐order or Leontovic surface‐impedance boundary condition (SIBC) for the modelling of fully three‐dimensional (3‐D) lossy curved surfaces in a Cartesian grid is presented for the frequency‐domain finite‐difference (FD) methods. The impedance boundary condition is applied to auxiliary tangential electric and magnetic field components defined at the curved surface. The auxiliary components are subsequently eliminated from the formulation resulting in a modification of the local permeability value at boundary cells, allowing the curved 3‐D surface to be described in terms of Cartesian grid components. The proposed formulation can be applied to model skin‐effect loss in time‐harmonic driven problems. In addition, the impedance matrix can be used as a post‐processor for the eigenmode solver to calculate the wall loss.
The validity of the proposed model is evaluated by investigating the quality factors of cylindrical and spherical cavity resonators. The results are compared with analytic solutions and numerical reference data calculated with the commercial software package CST Microwave Studio™ (MWS). The convergence rate of the results is shown to be of second‐order for smooth curved metal surfaces. The overall accuracy of the approach is comparable to that of CST MWS™. Copyright © 2006 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0894-3370</identifier><identifier>EISSN: 1099-1204</identifier><identifier>DOI: 10.1002/jnm.620</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>finite integration technique ; finite-difference methods ; impedance boundary conditions ; locally conformal grids ; losses</subject><ispartof>International journal of numerical modelling, 2006-09, Vol.19 (5), p.421-431</ispartof><rights>Copyright © 2006 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3300-dd11d05c4b83dac8454bfd55dfbb856f4fcb5582aa32d442bb1955a66970b96d3</citedby><cites>FETCH-LOGICAL-c3300-dd11d05c4b83dac8454bfd55dfbb856f4fcb5582aa32d442bb1955a66970b96d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjnm.620$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjnm.620$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Mäkinen, Riku M.</creatorcontrib><creatorcontrib>De Gersem, Herbert</creatorcontrib><creatorcontrib>Weiland, Thomas</creatorcontrib><creatorcontrib>Kivikoski, Markku A.</creatorcontrib><title>Modelling of lossy curved surfaces in the 3-D frequency-domain finite-difference methods</title><title>International journal of numerical modelling</title><addtitle>Int. J. Numer. Model</addtitle><description>A conformal first‐order or Leontovic surface‐impedance boundary condition (SIBC) for the modelling of fully three‐dimensional (3‐D) lossy curved surfaces in a Cartesian grid is presented for the frequency‐domain finite‐difference (FD) methods. The impedance boundary condition is applied to auxiliary tangential electric and magnetic field components defined at the curved surface. The auxiliary components are subsequently eliminated from the formulation resulting in a modification of the local permeability value at boundary cells, allowing the curved 3‐D surface to be described in terms of Cartesian grid components. The proposed formulation can be applied to model skin‐effect loss in time‐harmonic driven problems. In addition, the impedance matrix can be used as a post‐processor for the eigenmode solver to calculate the wall loss.
The validity of the proposed model is evaluated by investigating the quality factors of cylindrical and spherical cavity resonators. The results are compared with analytic solutions and numerical reference data calculated with the commercial software package CST Microwave Studio™ (MWS). The convergence rate of the results is shown to be of second‐order for smooth curved metal surfaces. The overall accuracy of the approach is comparable to that of CST MWS™. Copyright © 2006 John Wiley & Sons, Ltd.</description><subject>finite integration technique</subject><subject>finite-difference methods</subject><subject>impedance boundary conditions</subject><subject>locally conformal grids</subject><subject>losses</subject><issn>0894-3370</issn><issn>1099-1204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp10LlOAzEQBmALgUQ4xCu4ggI5-Fh7d0sUIIBCaIKgs7w-iMMewd4AeXuMFtFRTfF_Gs38AJwQPCYY04tV24wFxTtgRHBZIkJxtgtGuCgzxFiO98FBjCuMMSOcjsDLQ2dsXfv2FXYO1l2MW6g34cMaGDfBKW0j9C3slxYydAVdsO8b2-otMl2jUuB863uLjHfOhhRY2Nh-2Zl4BPacqqM9_p2H4OnmejG5RbPH6d3kcoY0YxgjYwgxmOusKphRush4VjnDuXFVVXDhMqcrzguqFKMmy2hVkZJzJUSZ46oUhh2C02HvOnTptNjLxkedXlKt7TZR0pIJIThL8GyAOqQvg3VyHXyjwlYSLH-ak6k5mZpL8nyQn7622_-YvJ8_DBoN2sfefv1pFd6kyFnO5fN8KstcXE3pYibn7BsjGn5-</recordid><startdate>200609</startdate><enddate>200609</enddate><creator>Mäkinen, Riku M.</creator><creator>De Gersem, Herbert</creator><creator>Weiland, Thomas</creator><creator>Kivikoski, Markku A.</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200609</creationdate><title>Modelling of lossy curved surfaces in the 3-D frequency-domain finite-difference methods</title><author>Mäkinen, Riku M. ; De Gersem, Herbert ; Weiland, Thomas ; Kivikoski, Markku A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3300-dd11d05c4b83dac8454bfd55dfbb856f4fcb5582aa32d442bb1955a66970b96d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>finite integration technique</topic><topic>finite-difference methods</topic><topic>impedance boundary conditions</topic><topic>locally conformal grids</topic><topic>losses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mäkinen, Riku M.</creatorcontrib><creatorcontrib>De Gersem, Herbert</creatorcontrib><creatorcontrib>Weiland, Thomas</creatorcontrib><creatorcontrib>Kivikoski, Markku A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of numerical modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mäkinen, Riku M.</au><au>De Gersem, Herbert</au><au>Weiland, Thomas</au><au>Kivikoski, Markku A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of lossy curved surfaces in the 3-D frequency-domain finite-difference methods</atitle><jtitle>International journal of numerical modelling</jtitle><addtitle>Int. J. Numer. Model</addtitle><date>2006-09</date><risdate>2006</risdate><volume>19</volume><issue>5</issue><spage>421</spage><epage>431</epage><pages>421-431</pages><issn>0894-3370</issn><eissn>1099-1204</eissn><abstract>A conformal first‐order or Leontovic surface‐impedance boundary condition (SIBC) for the modelling of fully three‐dimensional (3‐D) lossy curved surfaces in a Cartesian grid is presented for the frequency‐domain finite‐difference (FD) methods. The impedance boundary condition is applied to auxiliary tangential electric and magnetic field components defined at the curved surface. The auxiliary components are subsequently eliminated from the formulation resulting in a modification of the local permeability value at boundary cells, allowing the curved 3‐D surface to be described in terms of Cartesian grid components. The proposed formulation can be applied to model skin‐effect loss in time‐harmonic driven problems. In addition, the impedance matrix can be used as a post‐processor for the eigenmode solver to calculate the wall loss.
The validity of the proposed model is evaluated by investigating the quality factors of cylindrical and spherical cavity resonators. The results are compared with analytic solutions and numerical reference data calculated with the commercial software package CST Microwave Studio™ (MWS). The convergence rate of the results is shown to be of second‐order for smooth curved metal surfaces. The overall accuracy of the approach is comparable to that of CST MWS™. Copyright © 2006 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/jnm.620</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-3370 |
ispartof | International journal of numerical modelling, 2006-09, Vol.19 (5), p.421-431 |
issn | 0894-3370 1099-1204 |
language | eng |
recordid | cdi_proquest_miscellaneous_29366653 |
source | Wiley Journals |
subjects | finite integration technique finite-difference methods impedance boundary conditions locally conformal grids losses |
title | Modelling of lossy curved surfaces in the 3-D frequency-domain finite-difference methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20lossy%20curved%20surfaces%20in%20the%203-D%20frequency-domain%20finite-difference%20methods&rft.jtitle=International%20journal%20of%20numerical%20modelling&rft.au=M%C3%A4kinen,%20Riku%20M.&rft.date=2006-09&rft.volume=19&rft.issue=5&rft.spage=421&rft.epage=431&rft.pages=421-431&rft.issn=0894-3370&rft.eissn=1099-1204&rft_id=info:doi/10.1002/jnm.620&rft_dat=%3Cproquest_cross%3E29366653%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29366653&rft_id=info:pmid/&rfr_iscdi=true |