AI vibration control of high-speed rotor systems using electrorheological fluid

This paper is concerned with the design and application of an electrorheological (ER) fluid damper to semiactive vibration control of rotor systems. In particular, the system under the present study is constructed structurally flexible in order to explore the behavior of a high-speed spindle system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2005-06, Vol.284 (3), p.685-703
Hauptverfasser: Lim, Seungchul, Park, Sang-Min, Kim, Kab-Il
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 703
container_issue 3
container_start_page 685
container_title Journal of sound and vibration
container_volume 284
creator Lim, Seungchul
Park, Sang-Min
Kim, Kab-Il
description This paper is concerned with the design and application of an electrorheological (ER) fluid damper to semiactive vibration control of rotor systems. In particular, the system under the present study is constructed structurally flexible in order to explore the behavior of a high-speed spindle system traversing multiple critical speeds within motor capacity. To seek a way of suppressing the rotor vibration, dynamic models for the proposed ER damper and its associated amplifier are derived. Subsequently, they are assembled with the other relevant spindle components by means of the finite element method, enabling predictions as to free and forced vibration characteristics of the entire rotor system. Next, an artificial intelligent (AI) feedback controller is synthesized based on the system model, taking into account the stiffening effect of the point damper in flexible rotor applications. Finally, computational and experimental results are presented regarding model validation and control performances. In practice, such an AI control scheme proves effective and robust whether the spin rate is either below or above the critical speeds.
doi_str_mv 10.1016/j.jsv.2004.07.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29365813</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X04006029</els_id><sourcerecordid>29365813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-52ff26325396677f296f40bf856a8153b3d5de9e609b918aafe99b123615ab363</originalsourceid><addsrcrecordid>eNp9kEGP0zAQhS0EEmXhB3DzBW4JYzt2YnFarVhYaaW9gMTNcpxx6yqNiyettP8eV12JG6e5vPfmvY-xjwJaAcJ82bd7OrcSoGuhb0F0r9hGgNXNoM3wmm0ApGw6A7_fsndEewCwneo27On2gZ_TWPya8sJDXtaSZ54j36XtrqEj4sRLXnPh9EwrHoifKC1bjjOGKi07zHPepuBnHudTmt6zN9HPhB9e7g37df_t592P5vHp-8Pd7WMTlB7WRssYpVFSK2tM30dpTexgjLWtH4RWo5r0hBYN2NGKwfuI1o5CKiO0H5VRN-zzNfdY8p8T0uoOiQLOs18wn8hJq4wehKpCcRWGkokKRncs6eDLsxPgLujc3lV07oLOQe8quur59BLuqS6LxS8h0T-j6S0YcSnx9arDuvScsDgKCZeAUyoVj5ty-s-Xv11JhCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29365813</pqid></control><display><type>article</type><title>AI vibration control of high-speed rotor systems using electrorheological fluid</title><source>Elsevier ScienceDirect Journals</source><creator>Lim, Seungchul ; Park, Sang-Min ; Kim, Kab-Il</creator><creatorcontrib>Lim, Seungchul ; Park, Sang-Min ; Kim, Kab-Il</creatorcontrib><description>This paper is concerned with the design and application of an electrorheological (ER) fluid damper to semiactive vibration control of rotor systems. In particular, the system under the present study is constructed structurally flexible in order to explore the behavior of a high-speed spindle system traversing multiple critical speeds within motor capacity. To seek a way of suppressing the rotor vibration, dynamic models for the proposed ER damper and its associated amplifier are derived. Subsequently, they are assembled with the other relevant spindle components by means of the finite element method, enabling predictions as to free and forced vibration characteristics of the entire rotor system. Next, an artificial intelligent (AI) feedback controller is synthesized based on the system model, taking into account the stiffening effect of the point damper in flexible rotor applications. Finally, computational and experimental results are presented regarding model validation and control performances. In practice, such an AI control scheme proves effective and robust whether the spin rate is either below or above the critical speeds.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2004.07.014</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of sound and vibration, 2005-06, Vol.284 (3), p.685-703</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-52ff26325396677f296f40bf856a8153b3d5de9e609b918aafe99b123615ab363</citedby><cites>FETCH-LOGICAL-c358t-52ff26325396677f296f40bf856a8153b3d5de9e609b918aafe99b123615ab363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2004.07.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16790616$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Seungchul</creatorcontrib><creatorcontrib>Park, Sang-Min</creatorcontrib><creatorcontrib>Kim, Kab-Il</creatorcontrib><title>AI vibration control of high-speed rotor systems using electrorheological fluid</title><title>Journal of sound and vibration</title><description>This paper is concerned with the design and application of an electrorheological (ER) fluid damper to semiactive vibration control of rotor systems. In particular, the system under the present study is constructed structurally flexible in order to explore the behavior of a high-speed spindle system traversing multiple critical speeds within motor capacity. To seek a way of suppressing the rotor vibration, dynamic models for the proposed ER damper and its associated amplifier are derived. Subsequently, they are assembled with the other relevant spindle components by means of the finite element method, enabling predictions as to free and forced vibration characteristics of the entire rotor system. Next, an artificial intelligent (AI) feedback controller is synthesized based on the system model, taking into account the stiffening effect of the point damper in flexible rotor applications. Finally, computational and experimental results are presented regarding model validation and control performances. In practice, such an AI control scheme proves effective and robust whether the spin rate is either below or above the critical speeds.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kEGP0zAQhS0EEmXhB3DzBW4JYzt2YnFarVhYaaW9gMTNcpxx6yqNiyettP8eV12JG6e5vPfmvY-xjwJaAcJ82bd7OrcSoGuhb0F0r9hGgNXNoM3wmm0ApGw6A7_fsndEewCwneo27On2gZ_TWPya8sJDXtaSZ54j36XtrqEj4sRLXnPh9EwrHoifKC1bjjOGKi07zHPepuBnHudTmt6zN9HPhB9e7g37df_t592P5vHp-8Pd7WMTlB7WRssYpVFSK2tM30dpTexgjLWtH4RWo5r0hBYN2NGKwfuI1o5CKiO0H5VRN-zzNfdY8p8T0uoOiQLOs18wn8hJq4wehKpCcRWGkokKRncs6eDLsxPgLujc3lV07oLOQe8quur59BLuqS6LxS8h0T-j6S0YcSnx9arDuvScsDgKCZeAUyoVj5ty-s-Xv11JhCA</recordid><startdate>20050621</startdate><enddate>20050621</enddate><creator>Lim, Seungchul</creator><creator>Park, Sang-Min</creator><creator>Kim, Kab-Il</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20050621</creationdate><title>AI vibration control of high-speed rotor systems using electrorheological fluid</title><author>Lim, Seungchul ; Park, Sang-Min ; Kim, Kab-Il</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-52ff26325396677f296f40bf856a8153b3d5de9e609b918aafe99b123615ab363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Seungchul</creatorcontrib><creatorcontrib>Park, Sang-Min</creatorcontrib><creatorcontrib>Kim, Kab-Il</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Seungchul</au><au>Park, Sang-Min</au><au>Kim, Kab-Il</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI vibration control of high-speed rotor systems using electrorheological fluid</atitle><jtitle>Journal of sound and vibration</jtitle><date>2005-06-21</date><risdate>2005</risdate><volume>284</volume><issue>3</issue><spage>685</spage><epage>703</epage><pages>685-703</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>This paper is concerned with the design and application of an electrorheological (ER) fluid damper to semiactive vibration control of rotor systems. In particular, the system under the present study is constructed structurally flexible in order to explore the behavior of a high-speed spindle system traversing multiple critical speeds within motor capacity. To seek a way of suppressing the rotor vibration, dynamic models for the proposed ER damper and its associated amplifier are derived. Subsequently, they are assembled with the other relevant spindle components by means of the finite element method, enabling predictions as to free and forced vibration characteristics of the entire rotor system. Next, an artificial intelligent (AI) feedback controller is synthesized based on the system model, taking into account the stiffening effect of the point damper in flexible rotor applications. Finally, computational and experimental results are presented regarding model validation and control performances. In practice, such an AI control scheme proves effective and robust whether the spin rate is either below or above the critical speeds.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2004.07.014</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2005-06, Vol.284 (3), p.685-703
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_miscellaneous_29365813
source Elsevier ScienceDirect Journals
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title AI vibration control of high-speed rotor systems using electrorheological fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI%20vibration%20control%20of%20high-speed%20rotor%20systems%20using%20electrorheological%20fluid&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Lim,%20Seungchul&rft.date=2005-06-21&rft.volume=284&rft.issue=3&rft.spage=685&rft.epage=703&rft.pages=685-703&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/j.jsv.2004.07.014&rft_dat=%3Cproquest_cross%3E29365813%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29365813&rft_id=info:pmid/&rft_els_id=S0022460X04006029&rfr_iscdi=true