The use of a dynamical basis for computing the modes of a beam system with a discontinuous cross-section

In this work we determine the modes and the frequency equation of Euler-Bernoulli beams with discontinuous properties in the transversal section by using a dynamical basis which is generated by a fundamental solution of a fourth-order differential equation [1-4]. Free vibrations of stepped beams hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2005-03, Vol.281 (3), p.1175-1185
1. Verfasser: Tsukazan, Teresa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1185
container_issue 3
container_start_page 1175
container_title Journal of sound and vibration
container_volume 281
creator Tsukazan, Teresa
description In this work we determine the modes and the frequency equation of Euler-Bernoulli beams with discontinuous properties in the transversal section by using a dynamical basis which is generated by a fundamental solution of a fourth-order differential equation [1-4]. Free vibrations of stepped beams have been studied by several authors applying exact and numerical techniques. We can cite Gorman [5], Jang and Bert [6, 7], Nagulseswaran [8-10], De Rosa [11-13], Vu et al. [14], Turhan [15], Korenev and Reznikov [16], Krylov [17], among others. The frequency equation and mode shapes have been formulated in terms of the classical Euler basis involving the roots of the associated characteristic polynomial of a fourth-order differential equation. The use of the dynamical basis allows the identification of factors that frequently appear in the literature, as well as writing the frequency equations and modes in a compact form.
doi_str_mv 10.1016/j.jsv.2004.04.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29348585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X04003608</els_id><sourcerecordid>29348585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-d28cf13a46b4713f52d5cf8521a7c00f0c3146d177c6b58329cb7547cf32ab3f3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsP4C4b3U3NdS64kuINCm4quAuZTGJTOpOaM1Pp25uxBXfCgWy-_-Q_H0LXlMwoofnderaG3YwRImbjMHqCJpRUMitlXp6iCSGMZSInH-foAmBNCKkEFxO0Wq4sHsDi4LDGzb7TrTd6g2sNHrALEZvQbofed5-4T2gbGgsHuLa6xbCH3rb42_erMe_BhC7BQxgAmxgAMrCm96G7RGdOb8BeHd8pen96XM5fssXb8-v8YZEZLss-a1hpHOVa5LUoKHeSNdK4UjKqC0OII4ZTkTe0KExey5KzytSFFIVxnOmaOz5Ft4e92xi-Bgu9alMpu9nozqZSilVclLKUCaQH8LdmtE5to2913CtK1OhUrVVyqkanahxGU-bmuFxDsuSi7oyHv2AuBZNFlbj7A2fTpTtvowLjbWds42PSoZrg__nlB9vWjN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29348585</pqid></control><display><type>article</type><title>The use of a dynamical basis for computing the modes of a beam system with a discontinuous cross-section</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Tsukazan, Teresa</creator><creatorcontrib>Tsukazan, Teresa</creatorcontrib><description>In this work we determine the modes and the frequency equation of Euler-Bernoulli beams with discontinuous properties in the transversal section by using a dynamical basis which is generated by a fundamental solution of a fourth-order differential equation [1-4]. Free vibrations of stepped beams have been studied by several authors applying exact and numerical techniques. We can cite Gorman [5], Jang and Bert [6, 7], Nagulseswaran [8-10], De Rosa [11-13], Vu et al. [14], Turhan [15], Korenev and Reznikov [16], Krylov [17], among others. The frequency equation and mode shapes have been formulated in terms of the classical Euler basis involving the roots of the associated characteristic polynomial of a fourth-order differential equation. The use of the dynamical basis allows the identification of factors that frequently appear in the literature, as well as writing the frequency equations and modes in a compact form.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2004.04.021</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of sound and vibration, 2005-03, Vol.281 (3), p.1175-1185</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-d28cf13a46b4713f52d5cf8521a7c00f0c3146d177c6b58329cb7547cf32ab3f3</citedby><cites>FETCH-LOGICAL-c358t-d28cf13a46b4713f52d5cf8521a7c00f0c3146d177c6b58329cb7547cf32ab3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022460X04003608$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16542579$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsukazan, Teresa</creatorcontrib><title>The use of a dynamical basis for computing the modes of a beam system with a discontinuous cross-section</title><title>Journal of sound and vibration</title><description>In this work we determine the modes and the frequency equation of Euler-Bernoulli beams with discontinuous properties in the transversal section by using a dynamical basis which is generated by a fundamental solution of a fourth-order differential equation [1-4]. Free vibrations of stepped beams have been studied by several authors applying exact and numerical techniques. We can cite Gorman [5], Jang and Bert [6, 7], Nagulseswaran [8-10], De Rosa [11-13], Vu et al. [14], Turhan [15], Korenev and Reznikov [16], Krylov [17], among others. The frequency equation and mode shapes have been formulated in terms of the classical Euler basis involving the roots of the associated characteristic polynomial of a fourth-order differential equation. The use of the dynamical basis allows the identification of factors that frequently appear in the literature, as well as writing the frequency equations and modes in a compact form.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsP4C4b3U3NdS64kuINCm4quAuZTGJTOpOaM1Pp25uxBXfCgWy-_-Q_H0LXlMwoofnderaG3YwRImbjMHqCJpRUMitlXp6iCSGMZSInH-foAmBNCKkEFxO0Wq4sHsDi4LDGzb7TrTd6g2sNHrALEZvQbofed5-4T2gbGgsHuLa6xbCH3rb42_erMe_BhC7BQxgAmxgAMrCm96G7RGdOb8BeHd8pen96XM5fssXb8-v8YZEZLss-a1hpHOVa5LUoKHeSNdK4UjKqC0OII4ZTkTe0KExey5KzytSFFIVxnOmaOz5Ft4e92xi-Bgu9alMpu9nozqZSilVclLKUCaQH8LdmtE5to2913CtK1OhUrVVyqkanahxGU-bmuFxDsuSi7oyHv2AuBZNFlbj7A2fTpTtvowLjbWds42PSoZrg__nlB9vWjN4</recordid><startdate>20050322</startdate><enddate>20050322</enddate><creator>Tsukazan, Teresa</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20050322</creationdate><title>The use of a dynamical basis for computing the modes of a beam system with a discontinuous cross-section</title><author>Tsukazan, Teresa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-d28cf13a46b4713f52d5cf8521a7c00f0c3146d177c6b58329cb7547cf32ab3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsukazan, Teresa</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsukazan, Teresa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of a dynamical basis for computing the modes of a beam system with a discontinuous cross-section</atitle><jtitle>Journal of sound and vibration</jtitle><date>2005-03-22</date><risdate>2005</risdate><volume>281</volume><issue>3</issue><spage>1175</spage><epage>1185</epage><pages>1175-1185</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>In this work we determine the modes and the frequency equation of Euler-Bernoulli beams with discontinuous properties in the transversal section by using a dynamical basis which is generated by a fundamental solution of a fourth-order differential equation [1-4]. Free vibrations of stepped beams have been studied by several authors applying exact and numerical techniques. We can cite Gorman [5], Jang and Bert [6, 7], Nagulseswaran [8-10], De Rosa [11-13], Vu et al. [14], Turhan [15], Korenev and Reznikov [16], Krylov [17], among others. The frequency equation and mode shapes have been formulated in terms of the classical Euler basis involving the roots of the associated characteristic polynomial of a fourth-order differential equation. The use of the dynamical basis allows the identification of factors that frequently appear in the literature, as well as writing the frequency equations and modes in a compact form.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2004.04.021</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2005-03, Vol.281 (3), p.1175-1185
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_miscellaneous_29348585
source Elsevier ScienceDirect Journals Complete
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title The use of a dynamical basis for computing the modes of a beam system with a discontinuous cross-section
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20a%20dynamical%20basis%20for%20computing%20the%20modes%20of%20a%20beam%20system%20with%20a%20discontinuous%20cross-section&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Tsukazan,%20Teresa&rft.date=2005-03-22&rft.volume=281&rft.issue=3&rft.spage=1175&rft.epage=1185&rft.pages=1175-1185&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/j.jsv.2004.04.021&rft_dat=%3Cproquest_cross%3E29348585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29348585&rft_id=info:pmid/&rft_els_id=S0022460X04003608&rfr_iscdi=true