The use of a dynamical basis for computing the modes of a beam system with a discontinuous cross-section
In this work we determine the modes and the frequency equation of Euler-Bernoulli beams with discontinuous properties in the transversal section by using a dynamical basis which is generated by a fundamental solution of a fourth-order differential equation [1-4]. Free vibrations of stepped beams hav...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2005-03, Vol.281 (3), p.1175-1185 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1185 |
---|---|
container_issue | 3 |
container_start_page | 1175 |
container_title | Journal of sound and vibration |
container_volume | 281 |
creator | Tsukazan, Teresa |
description | In this work we determine the modes and the frequency equation of Euler-Bernoulli beams with discontinuous properties in the transversal section by using a dynamical basis which is generated by a fundamental solution of a fourth-order differential equation [1-4]. Free vibrations of stepped beams have been studied by several authors applying exact and numerical techniques. We can cite Gorman [5], Jang and Bert [6, 7], Nagulseswaran [8-10], De Rosa [11-13], Vu et al. [14], Turhan [15], Korenev and Reznikov [16], Krylov [17], among others. The frequency equation and mode shapes have been formulated in terms of the classical Euler basis involving the roots of the associated characteristic polynomial of a fourth-order differential equation. The use of the dynamical basis allows the identification of factors that frequently appear in the literature, as well as writing the frequency equations and modes in a compact form. |
doi_str_mv | 10.1016/j.jsv.2004.04.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29348585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X04003608</els_id><sourcerecordid>29348585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-d28cf13a46b4713f52d5cf8521a7c00f0c3146d177c6b58329cb7547cf32ab3f3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsP4C4b3U3NdS64kuINCm4quAuZTGJTOpOaM1Pp25uxBXfCgWy-_-Q_H0LXlMwoofnderaG3YwRImbjMHqCJpRUMitlXp6iCSGMZSInH-foAmBNCKkEFxO0Wq4sHsDi4LDGzb7TrTd6g2sNHrALEZvQbofed5-4T2gbGgsHuLa6xbCH3rb42_erMe_BhC7BQxgAmxgAMrCm96G7RGdOb8BeHd8pen96XM5fssXb8-v8YZEZLss-a1hpHOVa5LUoKHeSNdK4UjKqC0OII4ZTkTe0KExey5KzytSFFIVxnOmaOz5Ft4e92xi-Bgu9alMpu9nozqZSilVclLKUCaQH8LdmtE5to2913CtK1OhUrVVyqkanahxGU-bmuFxDsuSi7oyHv2AuBZNFlbj7A2fTpTtvowLjbWds42PSoZrg__nlB9vWjN4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29348585</pqid></control><display><type>article</type><title>The use of a dynamical basis for computing the modes of a beam system with a discontinuous cross-section</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Tsukazan, Teresa</creator><creatorcontrib>Tsukazan, Teresa</creatorcontrib><description>In this work we determine the modes and the frequency equation of Euler-Bernoulli beams with discontinuous properties in the transversal section by using a dynamical basis which is generated by a fundamental solution of a fourth-order differential equation [1-4]. Free vibrations of stepped beams have been studied by several authors applying exact and numerical techniques. We can cite Gorman [5], Jang and Bert [6, 7], Nagulseswaran [8-10], De Rosa [11-13], Vu et al. [14], Turhan [15], Korenev and Reznikov [16], Krylov [17], among others. The frequency equation and mode shapes have been formulated in terms of the classical Euler basis involving the roots of the associated characteristic polynomial of a fourth-order differential equation. The use of the dynamical basis allows the identification of factors that frequently appear in the literature, as well as writing the frequency equations and modes in a compact form.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2004.04.021</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of sound and vibration, 2005-03, Vol.281 (3), p.1175-1185</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-d28cf13a46b4713f52d5cf8521a7c00f0c3146d177c6b58329cb7547cf32ab3f3</citedby><cites>FETCH-LOGICAL-c358t-d28cf13a46b4713f52d5cf8521a7c00f0c3146d177c6b58329cb7547cf32ab3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022460X04003608$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16542579$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsukazan, Teresa</creatorcontrib><title>The use of a dynamical basis for computing the modes of a beam system with a discontinuous cross-section</title><title>Journal of sound and vibration</title><description>In this work we determine the modes and the frequency equation of Euler-Bernoulli beams with discontinuous properties in the transversal section by using a dynamical basis which is generated by a fundamental solution of a fourth-order differential equation [1-4]. Free vibrations of stepped beams have been studied by several authors applying exact and numerical techniques. We can cite Gorman [5], Jang and Bert [6, 7], Nagulseswaran [8-10], De Rosa [11-13], Vu et al. [14], Turhan [15], Korenev and Reznikov [16], Krylov [17], among others. The frequency equation and mode shapes have been formulated in terms of the classical Euler basis involving the roots of the associated characteristic polynomial of a fourth-order differential equation. The use of the dynamical basis allows the identification of factors that frequently appear in the literature, as well as writing the frequency equations and modes in a compact form.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsP4C4b3U3NdS64kuINCm4quAuZTGJTOpOaM1Pp25uxBXfCgWy-_-Q_H0LXlMwoofnderaG3YwRImbjMHqCJpRUMitlXp6iCSGMZSInH-foAmBNCKkEFxO0Wq4sHsDi4LDGzb7TrTd6g2sNHrALEZvQbofed5-4T2gbGgsHuLa6xbCH3rb42_erMe_BhC7BQxgAmxgAMrCm96G7RGdOb8BeHd8pen96XM5fssXb8-v8YZEZLss-a1hpHOVa5LUoKHeSNdK4UjKqC0OII4ZTkTe0KExey5KzytSFFIVxnOmaOz5Ft4e92xi-Bgu9alMpu9nozqZSilVclLKUCaQH8LdmtE5to2913CtK1OhUrVVyqkanahxGU-bmuFxDsuSi7oyHv2AuBZNFlbj7A2fTpTtvowLjbWds42PSoZrg__nlB9vWjN4</recordid><startdate>20050322</startdate><enddate>20050322</enddate><creator>Tsukazan, Teresa</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20050322</creationdate><title>The use of a dynamical basis for computing the modes of a beam system with a discontinuous cross-section</title><author>Tsukazan, Teresa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-d28cf13a46b4713f52d5cf8521a7c00f0c3146d177c6b58329cb7547cf32ab3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsukazan, Teresa</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsukazan, Teresa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The use of a dynamical basis for computing the modes of a beam system with a discontinuous cross-section</atitle><jtitle>Journal of sound and vibration</jtitle><date>2005-03-22</date><risdate>2005</risdate><volume>281</volume><issue>3</issue><spage>1175</spage><epage>1185</epage><pages>1175-1185</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>In this work we determine the modes and the frequency equation of Euler-Bernoulli beams with discontinuous properties in the transversal section by using a dynamical basis which is generated by a fundamental solution of a fourth-order differential equation [1-4]. Free vibrations of stepped beams have been studied by several authors applying exact and numerical techniques. We can cite Gorman [5], Jang and Bert [6, 7], Nagulseswaran [8-10], De Rosa [11-13], Vu et al. [14], Turhan [15], Korenev and Reznikov [16], Krylov [17], among others. The frequency equation and mode shapes have been formulated in terms of the classical Euler basis involving the roots of the associated characteristic polynomial of a fourth-order differential equation. The use of the dynamical basis allows the identification of factors that frequently appear in the literature, as well as writing the frequency equations and modes in a compact form.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2004.04.021</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2005-03, Vol.281 (3), p.1175-1185 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_proquest_miscellaneous_29348585 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | The use of a dynamical basis for computing the modes of a beam system with a discontinuous cross-section |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20use%20of%20a%20dynamical%20basis%20for%20computing%20the%20modes%20of%20a%20beam%20system%20with%20a%20discontinuous%20cross-section&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Tsukazan,%20Teresa&rft.date=2005-03-22&rft.volume=281&rft.issue=3&rft.spage=1175&rft.epage=1185&rft.pages=1175-1185&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/j.jsv.2004.04.021&rft_dat=%3Cproquest_cross%3E29348585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29348585&rft_id=info:pmid/&rft_els_id=S0022460X04003608&rfr_iscdi=true |