Characterization of Porous Nanostructures
Fractal and aggregate structures of porous materials were studied by a variety of the structure characterization techniques (TEM, small angle X-ray scattering, nitrogen sorption). Scattering data (SAXS, USAXS) for porous materials measured with laboratory equipment and synchrotron technique were int...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2006-01, Vol.514-516, p.1191-1195 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1195 |
---|---|
container_issue | |
container_start_page | 1191 |
container_title | Materials science forum |
container_volume | 514-516 |
creator | Sinko, Katalin Torma, Viktoria Pàszli, I. |
description | Fractal and aggregate structures of porous materials were studied by a variety of the
structure characterization techniques (TEM, small angle X-ray scattering, nitrogen sorption). Scattering data (SAXS, USAXS) for porous materials measured with laboratory equipment and synchrotron technique were interpreted in terms of Guinier, Emmerling, Freltoft, modified Freltoft theories, and simple power law expressions. The evaluation of scattering measurements resulted in
fractal dimensions, sizes of the elementary units, the fractal domains or the aggregates. TEM images confirmed the sizes of the elementary building units, while the pore size distributions could be obtained by nitrogen adsorption. The specific surface area was calculated with respect to the possibility of multilayer formation during nitrogen absorption. |
doi_str_mv | 10.4028/www.scientific.net/MSF.514-516.1191 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29347868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29347868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-1cdf852f27bf7493e1780708c77fd299fdbc5257e4169014ef3201526983d85e3</originalsourceid><addsrcrecordid>eNqV0E1LAzEQBuAgCtbqf-hJENltJrv5OsrSqlA_QD2HNJvQLe2mJlmK_npTKnj2MMzl5WXmQegWcFljIqb7_b6MprN96lxnyt6m6dPbvKRQFxRYCSDhBI2AMVJITskpGmFCaUFrzs7RRYxrjCsQwEboplnpoE2yofvWqfP9xLvJqw9-iJNn3fuYwmDSEGy8RGdOb6K9-t1j9DGfvTcPxeLl_rG5WxSmwiIVYFonKHGELx2vZWWBC8yxMJy7lkjp2qWhhHJbA5MYausqgoESJkXVCmqrMbo-9u6C_xxsTGrbRWM3G93bfJUisqq5YCIHm2PQBB9jsE7tQrfV4UsBVgcmlZnUH5PKTCozqcyUh6kDU26ZHVtS0H1M1qzU2g-hzy_-q-cHMzJ6tA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29347868</pqid></control><display><type>article</type><title>Characterization of Porous Nanostructures</title><source>Scientific.net Journals</source><creator>Sinko, Katalin ; Torma, Viktoria ; Pàszli, I.</creator><creatorcontrib>Sinko, Katalin ; Torma, Viktoria ; Pàszli, I.</creatorcontrib><description>Fractal and aggregate structures of porous materials were studied by a variety of the
structure characterization techniques (TEM, small angle X-ray scattering, nitrogen sorption). Scattering data (SAXS, USAXS) for porous materials measured with laboratory equipment and synchrotron technique were interpreted in terms of Guinier, Emmerling, Freltoft, modified Freltoft theories, and simple power law expressions. The evaluation of scattering measurements resulted in
fractal dimensions, sizes of the elementary units, the fractal domains or the aggregates. TEM images confirmed the sizes of the elementary building units, while the pore size distributions could be obtained by nitrogen adsorption. The specific surface area was calculated with respect to the possibility of multilayer formation during nitrogen absorption.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.514-516.1191</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><ispartof>Materials science forum, 2006-01, Vol.514-516, p.1191-1195</ispartof><rights>2006 Trans Tech Publications Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-1cdf852f27bf7493e1780708c77fd299fdbc5257e4169014ef3201526983d85e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/32?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sinko, Katalin</creatorcontrib><creatorcontrib>Torma, Viktoria</creatorcontrib><creatorcontrib>Pàszli, I.</creatorcontrib><title>Characterization of Porous Nanostructures</title><title>Materials science forum</title><description>Fractal and aggregate structures of porous materials were studied by a variety of the
structure characterization techniques (TEM, small angle X-ray scattering, nitrogen sorption). Scattering data (SAXS, USAXS) for porous materials measured with laboratory equipment and synchrotron technique were interpreted in terms of Guinier, Emmerling, Freltoft, modified Freltoft theories, and simple power law expressions. The evaluation of scattering measurements resulted in
fractal dimensions, sizes of the elementary units, the fractal domains or the aggregates. TEM images confirmed the sizes of the elementary building units, while the pore size distributions could be obtained by nitrogen adsorption. The specific surface area was calculated with respect to the possibility of multilayer formation during nitrogen absorption.</description><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqV0E1LAzEQBuAgCtbqf-hJENltJrv5OsrSqlA_QD2HNJvQLe2mJlmK_npTKnj2MMzl5WXmQegWcFljIqb7_b6MprN96lxnyt6m6dPbvKRQFxRYCSDhBI2AMVJITskpGmFCaUFrzs7RRYxrjCsQwEboplnpoE2yofvWqfP9xLvJqw9-iJNn3fuYwmDSEGy8RGdOb6K9-t1j9DGfvTcPxeLl_rG5WxSmwiIVYFonKHGELx2vZWWBC8yxMJy7lkjp2qWhhHJbA5MYausqgoESJkXVCmqrMbo-9u6C_xxsTGrbRWM3G93bfJUisqq5YCIHm2PQBB9jsE7tQrfV4UsBVgcmlZnUH5PKTCozqcyUh6kDU26ZHVtS0H1M1qzU2g-hzy_-q-cHMzJ6tA</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Sinko, Katalin</creator><creator>Torma, Viktoria</creator><creator>Pàszli, I.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20060101</creationdate><title>Characterization of Porous Nanostructures</title><author>Sinko, Katalin ; Torma, Viktoria ; Pàszli, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-1cdf852f27bf7493e1780708c77fd299fdbc5257e4169014ef3201526983d85e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinko, Katalin</creatorcontrib><creatorcontrib>Torma, Viktoria</creatorcontrib><creatorcontrib>Pàszli, I.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinko, Katalin</au><au>Torma, Viktoria</au><au>Pàszli, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Porous Nanostructures</atitle><jtitle>Materials science forum</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>514-516</volume><spage>1191</spage><epage>1195</epage><pages>1191-1195</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>Fractal and aggregate structures of porous materials were studied by a variety of the
structure characterization techniques (TEM, small angle X-ray scattering, nitrogen sorption). Scattering data (SAXS, USAXS) for porous materials measured with laboratory equipment and synchrotron technique were interpreted in terms of Guinier, Emmerling, Freltoft, modified Freltoft theories, and simple power law expressions. The evaluation of scattering measurements resulted in
fractal dimensions, sizes of the elementary units, the fractal domains or the aggregates. TEM images confirmed the sizes of the elementary building units, while the pore size distributions could be obtained by nitrogen adsorption. The specific surface area was calculated with respect to the possibility of multilayer formation during nitrogen absorption.</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.514-516.1191</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0255-5476 |
ispartof | Materials science forum, 2006-01, Vol.514-516, p.1191-1195 |
issn | 0255-5476 1662-9752 1662-9752 |
language | eng |
recordid | cdi_proquest_miscellaneous_29347868 |
source | Scientific.net Journals |
title | Characterization of Porous Nanostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Porous%20Nanostructures&rft.jtitle=Materials%20science%20forum&rft.au=Sinko,%20Katalin&rft.date=2006-01-01&rft.volume=514-516&rft.spage=1191&rft.epage=1195&rft.pages=1191-1195&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.514-516.1191&rft_dat=%3Cproquest_cross%3E29347868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29347868&rft_id=info:pmid/&rfr_iscdi=true |