Characterization of Porous Nanostructures

Fractal and aggregate structures of porous materials were studied by a variety of the structure characterization techniques (TEM, small angle X-ray scattering, nitrogen sorption). Scattering data (SAXS, USAXS) for porous materials measured with laboratory equipment and synchrotron technique were int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2006-01, Vol.514-516, p.1191-1195
Hauptverfasser: Sinko, Katalin, Torma, Viktoria, Pàszli, I.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1195
container_issue
container_start_page 1191
container_title Materials science forum
container_volume 514-516
creator Sinko, Katalin
Torma, Viktoria
Pàszli, I.
description Fractal and aggregate structures of porous materials were studied by a variety of the structure characterization techniques (TEM, small angle X-ray scattering, nitrogen sorption). Scattering data (SAXS, USAXS) for porous materials measured with laboratory equipment and synchrotron technique were interpreted in terms of Guinier, Emmerling, Freltoft, modified Freltoft theories, and simple power law expressions. The evaluation of scattering measurements resulted in fractal dimensions, sizes of the elementary units, the fractal domains or the aggregates. TEM images confirmed the sizes of the elementary building units, while the pore size distributions could be obtained by nitrogen adsorption. The specific surface area was calculated with respect to the possibility of multilayer formation during nitrogen absorption.
doi_str_mv 10.4028/www.scientific.net/MSF.514-516.1191
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29347868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29347868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-1cdf852f27bf7493e1780708c77fd299fdbc5257e4169014ef3201526983d85e3</originalsourceid><addsrcrecordid>eNqV0E1LAzEQBuAgCtbqf-hJENltJrv5OsrSqlA_QD2HNJvQLe2mJlmK_npTKnj2MMzl5WXmQegWcFljIqb7_b6MprN96lxnyt6m6dPbvKRQFxRYCSDhBI2AMVJITskpGmFCaUFrzs7RRYxrjCsQwEboplnpoE2yofvWqfP9xLvJqw9-iJNn3fuYwmDSEGy8RGdOb6K9-t1j9DGfvTcPxeLl_rG5WxSmwiIVYFonKHGELx2vZWWBC8yxMJy7lkjp2qWhhHJbA5MYausqgoESJkXVCmqrMbo-9u6C_xxsTGrbRWM3G93bfJUisqq5YCIHm2PQBB9jsE7tQrfV4UsBVgcmlZnUH5PKTCozqcyUh6kDU26ZHVtS0H1M1qzU2g-hzy_-q-cHMzJ6tA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29347868</pqid></control><display><type>article</type><title>Characterization of Porous Nanostructures</title><source>Scientific.net Journals</source><creator>Sinko, Katalin ; Torma, Viktoria ; Pàszli, I.</creator><creatorcontrib>Sinko, Katalin ; Torma, Viktoria ; Pàszli, I.</creatorcontrib><description>Fractal and aggregate structures of porous materials were studied by a variety of the structure characterization techniques (TEM, small angle X-ray scattering, nitrogen sorption). Scattering data (SAXS, USAXS) for porous materials measured with laboratory equipment and synchrotron technique were interpreted in terms of Guinier, Emmerling, Freltoft, modified Freltoft theories, and simple power law expressions. The evaluation of scattering measurements resulted in fractal dimensions, sizes of the elementary units, the fractal domains or the aggregates. TEM images confirmed the sizes of the elementary building units, while the pore size distributions could be obtained by nitrogen adsorption. The specific surface area was calculated with respect to the possibility of multilayer formation during nitrogen absorption.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.514-516.1191</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><ispartof>Materials science forum, 2006-01, Vol.514-516, p.1191-1195</ispartof><rights>2006 Trans Tech Publications Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-1cdf852f27bf7493e1780708c77fd299fdbc5257e4169014ef3201526983d85e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/32?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sinko, Katalin</creatorcontrib><creatorcontrib>Torma, Viktoria</creatorcontrib><creatorcontrib>Pàszli, I.</creatorcontrib><title>Characterization of Porous Nanostructures</title><title>Materials science forum</title><description>Fractal and aggregate structures of porous materials were studied by a variety of the structure characterization techniques (TEM, small angle X-ray scattering, nitrogen sorption). Scattering data (SAXS, USAXS) for porous materials measured with laboratory equipment and synchrotron technique were interpreted in terms of Guinier, Emmerling, Freltoft, modified Freltoft theories, and simple power law expressions. The evaluation of scattering measurements resulted in fractal dimensions, sizes of the elementary units, the fractal domains or the aggregates. TEM images confirmed the sizes of the elementary building units, while the pore size distributions could be obtained by nitrogen adsorption. The specific surface area was calculated with respect to the possibility of multilayer formation during nitrogen absorption.</description><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqV0E1LAzEQBuAgCtbqf-hJENltJrv5OsrSqlA_QD2HNJvQLe2mJlmK_npTKnj2MMzl5WXmQegWcFljIqb7_b6MprN96lxnyt6m6dPbvKRQFxRYCSDhBI2AMVJITskpGmFCaUFrzs7RRYxrjCsQwEboplnpoE2yofvWqfP9xLvJqw9-iJNn3fuYwmDSEGy8RGdOb6K9-t1j9DGfvTcPxeLl_rG5WxSmwiIVYFonKHGELx2vZWWBC8yxMJy7lkjp2qWhhHJbA5MYausqgoESJkXVCmqrMbo-9u6C_xxsTGrbRWM3G93bfJUisqq5YCIHm2PQBB9jsE7tQrfV4UsBVgcmlZnUH5PKTCozqcyUh6kDU26ZHVtS0H1M1qzU2g-hzy_-q-cHMzJ6tA</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Sinko, Katalin</creator><creator>Torma, Viktoria</creator><creator>Pàszli, I.</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20060101</creationdate><title>Characterization of Porous Nanostructures</title><author>Sinko, Katalin ; Torma, Viktoria ; Pàszli, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-1cdf852f27bf7493e1780708c77fd299fdbc5257e4169014ef3201526983d85e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinko, Katalin</creatorcontrib><creatorcontrib>Torma, Viktoria</creatorcontrib><creatorcontrib>Pàszli, I.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinko, Katalin</au><au>Torma, Viktoria</au><au>Pàszli, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of Porous Nanostructures</atitle><jtitle>Materials science forum</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>514-516</volume><spage>1191</spage><epage>1195</epage><pages>1191-1195</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>Fractal and aggregate structures of porous materials were studied by a variety of the structure characterization techniques (TEM, small angle X-ray scattering, nitrogen sorption). Scattering data (SAXS, USAXS) for porous materials measured with laboratory equipment and synchrotron technique were interpreted in terms of Guinier, Emmerling, Freltoft, modified Freltoft theories, and simple power law expressions. The evaluation of scattering measurements resulted in fractal dimensions, sizes of the elementary units, the fractal domains or the aggregates. TEM images confirmed the sizes of the elementary building units, while the pore size distributions could be obtained by nitrogen adsorption. The specific surface area was calculated with respect to the possibility of multilayer formation during nitrogen absorption.</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.514-516.1191</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0255-5476
ispartof Materials science forum, 2006-01, Vol.514-516, p.1191-1195
issn 0255-5476
1662-9752
1662-9752
language eng
recordid cdi_proquest_miscellaneous_29347868
source Scientific.net Journals
title Characterization of Porous Nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20Porous%20Nanostructures&rft.jtitle=Materials%20science%20forum&rft.au=Sinko,%20Katalin&rft.date=2006-01-01&rft.volume=514-516&rft.spage=1191&rft.epage=1195&rft.pages=1191-1195&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.514-516.1191&rft_dat=%3Cproquest_cross%3E29347868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29347868&rft_id=info:pmid/&rfr_iscdi=true