Mode I stress intensity factor solutions for spot welds in lap-shear specimens

The analytical solutions of the mode I stress intensity factor for spot welds in lap-shear specimens are investigated based on the classical Kirchhoff plate theory for linear elastic materials. First, closed-form solutions for an infinite plate containing a rigid inclusion under counter bending cond...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2007-02, Vol.44 (3), p.1013-1037
Hauptverfasser: Lin, P.-C., Wang, D.-A., Pan, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1037
container_issue 3
container_start_page 1013
container_title International journal of solids and structures
container_volume 44
creator Lin, P.-C.
Wang, D.-A.
Pan, J.
description The analytical solutions of the mode I stress intensity factor for spot welds in lap-shear specimens are investigated based on the classical Kirchhoff plate theory for linear elastic materials. First, closed-form solutions for an infinite plate containing a rigid inclusion under counter bending conditions are derived. The development of the closed-form solutions is then used as a guide to develop approximate closed-form solutions for a finite square plate containing a rigid inclusion under counter bending conditions. Based on the J integral, the closed-form solutions are used to develop the analytical solutions of the mode I stress intensity factor for spot welds in lap-shear specimens of large and finite sizes. The analytical solutions of the mode I stress intensity factor based on the solutions for infinite and finite square plates with an inclusion are compared with the results of the three-dimensional finite element computations of lap-shear specimens with various ratios of the specimen half width to the nugget radius. The results indicate that the mode I stress intensity factor solution based on the finite square plate model with an inclusion agrees well with the computational results for lap-shear specimens for the ratio of the half specimen width to the nugget radius between 4 and 15. Finally, a set of the closed-form stress intensity factor solutions for lap-shear specimens at the critical locations are proposed for future applications.
doi_str_mv 10.1016/j.ijsolstr.2006.05.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29345240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768306001983</els_id><sourcerecordid>29345240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-e11bddff4334a2a1639a1a4414a736f568b6e2b0029752907eda1986eacad3a03</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BenJW-ukSdPmpix-waoXPYdsMsWUblOTrLL_3pbVs6cw4X1eZh5CLikUFKi47grXRd_HFIoSQBRQFcDoEVnQppZ5Sbk4JguAEvJaNOyUnMXYAQBnEhbk5dlbzJ6yicYYMzckHKJL-6zVJvmQTcW75PwQs3aeRp-yb-ztnMx6PebxA_X8j8ZtJ_KcnLS6j3jx-y7J-_3d2-oxX78-PK1u17lhkqYcKd1Y27acMa5LTQWTmmrOKdc1E20lmo3AcjMtLeuqlFCj1VQ2ArXRlmlgS3J16B2D_9xhTGrrosG-1wP6XVSlZLwq-RwUh6AJPsaArRqD2-qwVxTUrE916k-fmvUpqNSkbwJvDiBOZ3w5DCoah4NB6wKapKx3_1X8AIF4fYU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29345240</pqid></control><display><type>article</type><title>Mode I stress intensity factor solutions for spot welds in lap-shear specimens</title><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lin, P.-C. ; Wang, D.-A. ; Pan, J.</creator><creatorcontrib>Lin, P.-C. ; Wang, D.-A. ; Pan, J.</creatorcontrib><description>The analytical solutions of the mode I stress intensity factor for spot welds in lap-shear specimens are investigated based on the classical Kirchhoff plate theory for linear elastic materials. First, closed-form solutions for an infinite plate containing a rigid inclusion under counter bending conditions are derived. The development of the closed-form solutions is then used as a guide to develop approximate closed-form solutions for a finite square plate containing a rigid inclusion under counter bending conditions. Based on the J integral, the closed-form solutions are used to develop the analytical solutions of the mode I stress intensity factor for spot welds in lap-shear specimens of large and finite sizes. The analytical solutions of the mode I stress intensity factor based on the solutions for infinite and finite square plates with an inclusion are compared with the results of the three-dimensional finite element computations of lap-shear specimens with various ratios of the specimen half width to the nugget radius. The results indicate that the mode I stress intensity factor solution based on the finite square plate model with an inclusion agrees well with the computational results for lap-shear specimens for the ratio of the half specimen width to the nugget radius between 4 and 15. Finally, a set of the closed-form stress intensity factor solutions for lap-shear specimens at the critical locations are proposed for future applications.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2006.05.031</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Fatigue ; J integral ; Lap-shear specimen ; Mode I stress intensity factor ; Spot weld</subject><ispartof>International journal of solids and structures, 2007-02, Vol.44 (3), p.1013-1037</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-e11bddff4334a2a1639a1a4414a736f568b6e2b0029752907eda1986eacad3a03</citedby><cites>FETCH-LOGICAL-c391t-e11bddff4334a2a1639a1a4414a736f568b6e2b0029752907eda1986eacad3a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020768306001983$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Lin, P.-C.</creatorcontrib><creatorcontrib>Wang, D.-A.</creatorcontrib><creatorcontrib>Pan, J.</creatorcontrib><title>Mode I stress intensity factor solutions for spot welds in lap-shear specimens</title><title>International journal of solids and structures</title><description>The analytical solutions of the mode I stress intensity factor for spot welds in lap-shear specimens are investigated based on the classical Kirchhoff plate theory for linear elastic materials. First, closed-form solutions for an infinite plate containing a rigid inclusion under counter bending conditions are derived. The development of the closed-form solutions is then used as a guide to develop approximate closed-form solutions for a finite square plate containing a rigid inclusion under counter bending conditions. Based on the J integral, the closed-form solutions are used to develop the analytical solutions of the mode I stress intensity factor for spot welds in lap-shear specimens of large and finite sizes. The analytical solutions of the mode I stress intensity factor based on the solutions for infinite and finite square plates with an inclusion are compared with the results of the three-dimensional finite element computations of lap-shear specimens with various ratios of the specimen half width to the nugget radius. The results indicate that the mode I stress intensity factor solution based on the finite square plate model with an inclusion agrees well with the computational results for lap-shear specimens for the ratio of the half specimen width to the nugget radius between 4 and 15. Finally, a set of the closed-form stress intensity factor solutions for lap-shear specimens at the critical locations are proposed for future applications.</description><subject>Fatigue</subject><subject>J integral</subject><subject>Lap-shear specimen</subject><subject>Mode I stress intensity factor</subject><subject>Spot weld</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BenJW-ukSdPmpix-waoXPYdsMsWUblOTrLL_3pbVs6cw4X1eZh5CLikUFKi47grXRd_HFIoSQBRQFcDoEVnQppZ5Sbk4JguAEvJaNOyUnMXYAQBnEhbk5dlbzJ6yicYYMzckHKJL-6zVJvmQTcW75PwQs3aeRp-yb-ztnMx6PebxA_X8j8ZtJ_KcnLS6j3jx-y7J-_3d2-oxX78-PK1u17lhkqYcKd1Y27acMa5LTQWTmmrOKdc1E20lmo3AcjMtLeuqlFCj1VQ2ArXRlmlgS3J16B2D_9xhTGrrosG-1wP6XVSlZLwq-RwUh6AJPsaArRqD2-qwVxTUrE916k-fmvUpqNSkbwJvDiBOZ3w5DCoah4NB6wKapKx3_1X8AIF4fYU</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Lin, P.-C.</creator><creator>Wang, D.-A.</creator><creator>Pan, J.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20070201</creationdate><title>Mode I stress intensity factor solutions for spot welds in lap-shear specimens</title><author>Lin, P.-C. ; Wang, D.-A. ; Pan, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-e11bddff4334a2a1639a1a4414a736f568b6e2b0029752907eda1986eacad3a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Fatigue</topic><topic>J integral</topic><topic>Lap-shear specimen</topic><topic>Mode I stress intensity factor</topic><topic>Spot weld</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, P.-C.</creatorcontrib><creatorcontrib>Wang, D.-A.</creatorcontrib><creatorcontrib>Pan, J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, P.-C.</au><au>Wang, D.-A.</au><au>Pan, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mode I stress intensity factor solutions for spot welds in lap-shear specimens</atitle><jtitle>International journal of solids and structures</jtitle><date>2007-02-01</date><risdate>2007</risdate><volume>44</volume><issue>3</issue><spage>1013</spage><epage>1037</epage><pages>1013-1037</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>The analytical solutions of the mode I stress intensity factor for spot welds in lap-shear specimens are investigated based on the classical Kirchhoff plate theory for linear elastic materials. First, closed-form solutions for an infinite plate containing a rigid inclusion under counter bending conditions are derived. The development of the closed-form solutions is then used as a guide to develop approximate closed-form solutions for a finite square plate containing a rigid inclusion under counter bending conditions. Based on the J integral, the closed-form solutions are used to develop the analytical solutions of the mode I stress intensity factor for spot welds in lap-shear specimens of large and finite sizes. The analytical solutions of the mode I stress intensity factor based on the solutions for infinite and finite square plates with an inclusion are compared with the results of the three-dimensional finite element computations of lap-shear specimens with various ratios of the specimen half width to the nugget radius. The results indicate that the mode I stress intensity factor solution based on the finite square plate model with an inclusion agrees well with the computational results for lap-shear specimens for the ratio of the half specimen width to the nugget radius between 4 and 15. Finally, a set of the closed-form stress intensity factor solutions for lap-shear specimens at the critical locations are proposed for future applications.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2006.05.031</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2007-02, Vol.44 (3), p.1013-1037
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_miscellaneous_29345240
source Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Fatigue
J integral
Lap-shear specimen
Mode I stress intensity factor
Spot weld
title Mode I stress intensity factor solutions for spot welds in lap-shear specimens
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A06%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mode%20I%20stress%20intensity%20factor%20solutions%20for%20spot%20welds%20in%20lap-shear%20specimens&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Lin,%20P.-C.&rft.date=2007-02-01&rft.volume=44&rft.issue=3&rft.spage=1013&rft.epage=1037&rft.pages=1013-1037&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2006.05.031&rft_dat=%3Cproquest_cross%3E29345240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29345240&rft_id=info:pmid/&rft_els_id=S0020768306001983&rfr_iscdi=true