Deep-learning-based reconstruction of undersampled MRI to reduce scan times: a multicentre, retrospective, cohort study

The extended acquisition times required for MRI limit its availability in resource-constrained settings. Consequently, accelerating MRI by undersampling k-space data, which is necessary to reconstruct an image, has been a long-standing but important challenge. We aimed to develop a deep convolutiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The lancet oncology 2024-03, Vol.25 (3), p.400-410
Hauptverfasser: Rastogi, Aditya, Brugnara, Gianluca, Foltyn-Dumitru, Martha, Mahmutoglu, Mustafa Ahmed, Preetha, Chandrakanth J, Kobler, Erich, Pflüger, Irada, Schell, Marianne, Deike-Hofmann, Katerina, Kessler, Tobias, van den Bent, Martin J, Idbaih, Ahmed, Platten, Michael, Brandes, Alba A, Nabors, Burt, Stupp, Roger, Bernhardt, Denise, Debus, Jürgen, Abdollahi, Amir, Gorlia, Thierry, Tonn, Jörg-Christian, Weller, Michael, Maier-Hein, Klaus H, Radbruch, Alexander, Wick, Wolfgang, Bendszus, Martin, Meredig, Hagen, Kurz, Felix T, Vollmuth, Philipp
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 410
container_issue 3
container_start_page 400
container_title The lancet oncology
container_volume 25
creator Rastogi, Aditya
Brugnara, Gianluca
Foltyn-Dumitru, Martha
Mahmutoglu, Mustafa Ahmed
Preetha, Chandrakanth J
Kobler, Erich
Pflüger, Irada
Schell, Marianne
Deike-Hofmann, Katerina
Kessler, Tobias
van den Bent, Martin J
Idbaih, Ahmed
Platten, Michael
Brandes, Alba A
Nabors, Burt
Stupp, Roger
Bernhardt, Denise
Debus, Jürgen
Abdollahi, Amir
Gorlia, Thierry
Tonn, Jörg-Christian
Weller, Michael
Maier-Hein, Klaus H
Radbruch, Alexander
Wick, Wolfgang
Bendszus, Martin
Meredig, Hagen
Kurz, Felix T
Vollmuth, Philipp
description The extended acquisition times required for MRI limit its availability in resource-constrained settings. Consequently, accelerating MRI by undersampling k-space data, which is necessary to reconstruct an image, has been a long-standing but important challenge. We aimed to develop a deep convolutional neural network (dCNN) optimisation method for MRI reconstruction and to reduce scan times and evaluate its effect on image quality and accuracy of oncological imaging biomarkers. In this multicentre, retrospective, cohort study, MRI data from patients with glioblastoma treated at Heidelberg University Hospital (775 patients and 775 examinations) and from the phase 2 CORE trial (260 patients, 1083 examinations, and 58 institutions) and the phase 3 CENTRIC trial (505 patients, 3147 examinations, and 139 institutions) were used to develop, train, and test dCNN for reconstructing MRI from highly undersampled single-coil k-space data with various acceleration rates (R=2, 4, 6, 8, 10, and 15). Independent testing was performed with MRIs from the phase 2/3 EORTC-26101 trial (528 patients with glioblastoma, 1974 examinations, and 32 institutions). The similarity between undersampled dCNN-reconstructed and original MRIs was quantified with various image quality metrics, including structural similarity index measure (SSIM) and the accuracy of undersampled dCNN-reconstructed MRI on downstream radiological assessment of imaging biomarkers in oncology (automated artificial intelligence-based quantification of tumour burden and treatment response) was performed in the EORTC-26101 test dataset. The public NYU Langone Health fastMRI brain test dataset (558 patients and 558 examinations) was used to validate the generalisability and robustness of the dCNN for reconstructing MRIs from available multi-coil (parallel imaging) k-space data. In the EORTC-26101 test dataset, the median SSIM of undersampled dCNN-reconstructed MRI ranged from 0·88 to 0·99 across different acceleration rates, with 0·92 (95% CI 0·92–0·93) for 10-times acceleration (R=10). The 10-times undersampled dCNN-reconstructed MRI yielded excellent agreement with original MRI when assessing volumes of contrast-enhancing tumour (median DICE for spatial agreement of 0·89 [95% CI 0·88 to 0·89]; median volume difference of 0·01 cm3 [95% CI 0·00 to 0·03] equalling 0·21%; p=0·0036 for equivalence) or non-enhancing tumour or oedema (median DICE of 0·94 [95% CI 0·94 to 0·95]; median volume difference of –0·79 cm3 [95% CI
doi_str_mv 10.1016/S1470-2045(23)00641-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2934274720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1470204523006411</els_id><sourcerecordid>3039714510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-b80cd781821539dc24915b5f5d19043f35d24c32d663613ec483b004acd0b6823</originalsourceid><addsrcrecordid>eNqFkUlv1TAURiMEoqXwE0CW2BSJwPWUgQ1CZapUhMSwthz7BlwlduqhqP8ev_cKCzasPJ372b6naR5TeEGBdi-_UtFDy0DIU8afAXSCtvROc1y3RSvFMNzdzw_IUfMgpUsA2lOQ95sjPgjGQbLj5tdbxK1dUEfv_I920gktiWiCTzkWk13wJMykeIsx6XVb6vGnL-ckh0rZYpAkoz3JbsX0imiyliU7gz5HfF6JHEPasMZc16UJP0PMJOVibx4292a9JHx0O54039-_-3b2sb34_OH87M1Fa4SA3E4DGNsPdGBU8tEaJkYqJzlLS0cQfObSMmE4s13HO8rRiIFPAEIbC1M3MH7SnB5ytxiuCqasVpcMLov2GEpSbOSC9aJnUNGn_6CXoURfX6c48LGnQtIdJQ-UqV9LEWe1RbfqeKMoqJ0ZtTejdm1XjKu9GUVr3ZPb9DKtaP9W_VFRgdcHAGs7rh1GlYxDb9C66iMrG9x_rvgNdE6c8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039714510</pqid></control><display><type>article</type><title>Deep-learning-based reconstruction of undersampled MRI to reduce scan times: a multicentre, retrospective, cohort study</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Rastogi, Aditya ; Brugnara, Gianluca ; Foltyn-Dumitru, Martha ; Mahmutoglu, Mustafa Ahmed ; Preetha, Chandrakanth J ; Kobler, Erich ; Pflüger, Irada ; Schell, Marianne ; Deike-Hofmann, Katerina ; Kessler, Tobias ; van den Bent, Martin J ; Idbaih, Ahmed ; Platten, Michael ; Brandes, Alba A ; Nabors, Burt ; Stupp, Roger ; Bernhardt, Denise ; Debus, Jürgen ; Abdollahi, Amir ; Gorlia, Thierry ; Tonn, Jörg-Christian ; Weller, Michael ; Maier-Hein, Klaus H ; Radbruch, Alexander ; Wick, Wolfgang ; Bendszus, Martin ; Meredig, Hagen ; Kurz, Felix T ; Vollmuth, Philipp</creator><creatorcontrib>Rastogi, Aditya ; Brugnara, Gianluca ; Foltyn-Dumitru, Martha ; Mahmutoglu, Mustafa Ahmed ; Preetha, Chandrakanth J ; Kobler, Erich ; Pflüger, Irada ; Schell, Marianne ; Deike-Hofmann, Katerina ; Kessler, Tobias ; van den Bent, Martin J ; Idbaih, Ahmed ; Platten, Michael ; Brandes, Alba A ; Nabors, Burt ; Stupp, Roger ; Bernhardt, Denise ; Debus, Jürgen ; Abdollahi, Amir ; Gorlia, Thierry ; Tonn, Jörg-Christian ; Weller, Michael ; Maier-Hein, Klaus H ; Radbruch, Alexander ; Wick, Wolfgang ; Bendszus, Martin ; Meredig, Hagen ; Kurz, Felix T ; Vollmuth, Philipp</creatorcontrib><description>The extended acquisition times required for MRI limit its availability in resource-constrained settings. Consequently, accelerating MRI by undersampling k-space data, which is necessary to reconstruct an image, has been a long-standing but important challenge. We aimed to develop a deep convolutional neural network (dCNN) optimisation method for MRI reconstruction and to reduce scan times and evaluate its effect on image quality and accuracy of oncological imaging biomarkers. In this multicentre, retrospective, cohort study, MRI data from patients with glioblastoma treated at Heidelberg University Hospital (775 patients and 775 examinations) and from the phase 2 CORE trial (260 patients, 1083 examinations, and 58 institutions) and the phase 3 CENTRIC trial (505 patients, 3147 examinations, and 139 institutions) were used to develop, train, and test dCNN for reconstructing MRI from highly undersampled single-coil k-space data with various acceleration rates (R=2, 4, 6, 8, 10, and 15). Independent testing was performed with MRIs from the phase 2/3 EORTC-26101 trial (528 patients with glioblastoma, 1974 examinations, and 32 institutions). The similarity between undersampled dCNN-reconstructed and original MRIs was quantified with various image quality metrics, including structural similarity index measure (SSIM) and the accuracy of undersampled dCNN-reconstructed MRI on downstream radiological assessment of imaging biomarkers in oncology (automated artificial intelligence-based quantification of tumour burden and treatment response) was performed in the EORTC-26101 test dataset. The public NYU Langone Health fastMRI brain test dataset (558 patients and 558 examinations) was used to validate the generalisability and robustness of the dCNN for reconstructing MRIs from available multi-coil (parallel imaging) k-space data. In the EORTC-26101 test dataset, the median SSIM of undersampled dCNN-reconstructed MRI ranged from 0·88 to 0·99 across different acceleration rates, with 0·92 (95% CI 0·92–0·93) for 10-times acceleration (R=10). The 10-times undersampled dCNN-reconstructed MRI yielded excellent agreement with original MRI when assessing volumes of contrast-enhancing tumour (median DICE for spatial agreement of 0·89 [95% CI 0·88 to 0·89]; median volume difference of 0·01 cm3 [95% CI 0·00 to 0·03] equalling 0·21%; p=0·0036 for equivalence) or non-enhancing tumour or oedema (median DICE of 0·94 [95% CI 0·94 to 0·95]; median volume difference of –0·79 cm3 [95% CI –0·87 to –0·72] equalling –1·77%; p=0·023 for equivalence) in the EORTC-26101 test dataset. Automated volumetric tumour response assessment in the EORTC-26101 test dataset yielded an identical median time to progression of 4·27 months (95% CI 4·14 to 4·57) when using 10-times-undersampled dCNN-reconstructed or original MRI (log-rank p=0·80) and agreement in the time to progression in 374 (95·2%) of 393 patients with data. The dCNN generalised well to the fastMRI brain dataset, with significant improvements in the median SSIM when using multi-coil compared with single-coil k-space data (p&lt;0·0001). Deep-learning-based reconstruction of undersampled MRI allows for a substantial reduction of scan times, with a 10-times acceleration demonstrating excellent image quality while preserving the accuracy of derived imaging biomarkers for the assessment of oncological treatment response. Our developments are available as open source software and hold considerable promise for increasing the accessibility to MRI, pending further prospective validation. Deutsche Forschungsgemeinschaft (German Research Foundation) and an Else Kröner Clinician Scientist Endowed Professorship by the Else Kröner Fresenius Foundation.</description><identifier>ISSN: 1470-2045</identifier><identifier>EISSN: 1474-5488</identifier><identifier>DOI: 10.1016/S1470-2045(23)00641-1</identifier><identifier>PMID: 38423052</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Accuracy ; Artificial Intelligence ; Biomarkers ; Brain research ; Cancer ; Cohort analysis ; Cohort Studies ; Datasets ; Deep Learning ; Edema ; Fourier transforms ; Glioblastoma ; Glioblastoma - diagnostic imaging ; Glioma ; Humans ; Inverse problems ; Magnetic Resonance Imaging ; Medical imaging ; Neural networks ; Neuroimaging ; Oncology ; Patients ; Retrospective Studies ; Tumors</subject><ispartof>The lancet oncology, 2024-03, Vol.25 (3), p.400-410</ispartof><rights>2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license</rights><rights>Copyright © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.</rights><rights>2024. The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. This work is published under https://creativecommons.org/licenses/by/3.0/ (theLicense”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-b80cd781821539dc24915b5f5d19043f35d24c32d663613ec483b004acd0b6823</citedby><cites>FETCH-LOGICAL-c440t-b80cd781821539dc24915b5f5d19043f35d24c32d663613ec483b004acd0b6823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3039714510?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995,64385,64387,64389,72469</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38423052$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rastogi, Aditya</creatorcontrib><creatorcontrib>Brugnara, Gianluca</creatorcontrib><creatorcontrib>Foltyn-Dumitru, Martha</creatorcontrib><creatorcontrib>Mahmutoglu, Mustafa Ahmed</creatorcontrib><creatorcontrib>Preetha, Chandrakanth J</creatorcontrib><creatorcontrib>Kobler, Erich</creatorcontrib><creatorcontrib>Pflüger, Irada</creatorcontrib><creatorcontrib>Schell, Marianne</creatorcontrib><creatorcontrib>Deike-Hofmann, Katerina</creatorcontrib><creatorcontrib>Kessler, Tobias</creatorcontrib><creatorcontrib>van den Bent, Martin J</creatorcontrib><creatorcontrib>Idbaih, Ahmed</creatorcontrib><creatorcontrib>Platten, Michael</creatorcontrib><creatorcontrib>Brandes, Alba A</creatorcontrib><creatorcontrib>Nabors, Burt</creatorcontrib><creatorcontrib>Stupp, Roger</creatorcontrib><creatorcontrib>Bernhardt, Denise</creatorcontrib><creatorcontrib>Debus, Jürgen</creatorcontrib><creatorcontrib>Abdollahi, Amir</creatorcontrib><creatorcontrib>Gorlia, Thierry</creatorcontrib><creatorcontrib>Tonn, Jörg-Christian</creatorcontrib><creatorcontrib>Weller, Michael</creatorcontrib><creatorcontrib>Maier-Hein, Klaus H</creatorcontrib><creatorcontrib>Radbruch, Alexander</creatorcontrib><creatorcontrib>Wick, Wolfgang</creatorcontrib><creatorcontrib>Bendszus, Martin</creatorcontrib><creatorcontrib>Meredig, Hagen</creatorcontrib><creatorcontrib>Kurz, Felix T</creatorcontrib><creatorcontrib>Vollmuth, Philipp</creatorcontrib><title>Deep-learning-based reconstruction of undersampled MRI to reduce scan times: a multicentre, retrospective, cohort study</title><title>The lancet oncology</title><addtitle>Lancet Oncol</addtitle><description>The extended acquisition times required for MRI limit its availability in resource-constrained settings. Consequently, accelerating MRI by undersampling k-space data, which is necessary to reconstruct an image, has been a long-standing but important challenge. We aimed to develop a deep convolutional neural network (dCNN) optimisation method for MRI reconstruction and to reduce scan times and evaluate its effect on image quality and accuracy of oncological imaging biomarkers. In this multicentre, retrospective, cohort study, MRI data from patients with glioblastoma treated at Heidelberg University Hospital (775 patients and 775 examinations) and from the phase 2 CORE trial (260 patients, 1083 examinations, and 58 institutions) and the phase 3 CENTRIC trial (505 patients, 3147 examinations, and 139 institutions) were used to develop, train, and test dCNN for reconstructing MRI from highly undersampled single-coil k-space data with various acceleration rates (R=2, 4, 6, 8, 10, and 15). Independent testing was performed with MRIs from the phase 2/3 EORTC-26101 trial (528 patients with glioblastoma, 1974 examinations, and 32 institutions). The similarity between undersampled dCNN-reconstructed and original MRIs was quantified with various image quality metrics, including structural similarity index measure (SSIM) and the accuracy of undersampled dCNN-reconstructed MRI on downstream radiological assessment of imaging biomarkers in oncology (automated artificial intelligence-based quantification of tumour burden and treatment response) was performed in the EORTC-26101 test dataset. The public NYU Langone Health fastMRI brain test dataset (558 patients and 558 examinations) was used to validate the generalisability and robustness of the dCNN for reconstructing MRIs from available multi-coil (parallel imaging) k-space data. In the EORTC-26101 test dataset, the median SSIM of undersampled dCNN-reconstructed MRI ranged from 0·88 to 0·99 across different acceleration rates, with 0·92 (95% CI 0·92–0·93) for 10-times acceleration (R=10). The 10-times undersampled dCNN-reconstructed MRI yielded excellent agreement with original MRI when assessing volumes of contrast-enhancing tumour (median DICE for spatial agreement of 0·89 [95% CI 0·88 to 0·89]; median volume difference of 0·01 cm3 [95% CI 0·00 to 0·03] equalling 0·21%; p=0·0036 for equivalence) or non-enhancing tumour or oedema (median DICE of 0·94 [95% CI 0·94 to 0·95]; median volume difference of –0·79 cm3 [95% CI –0·87 to –0·72] equalling –1·77%; p=0·023 for equivalence) in the EORTC-26101 test dataset. Automated volumetric tumour response assessment in the EORTC-26101 test dataset yielded an identical median time to progression of 4·27 months (95% CI 4·14 to 4·57) when using 10-times-undersampled dCNN-reconstructed or original MRI (log-rank p=0·80) and agreement in the time to progression in 374 (95·2%) of 393 patients with data. The dCNN generalised well to the fastMRI brain dataset, with significant improvements in the median SSIM when using multi-coil compared with single-coil k-space data (p&lt;0·0001). Deep-learning-based reconstruction of undersampled MRI allows for a substantial reduction of scan times, with a 10-times acceleration demonstrating excellent image quality while preserving the accuracy of derived imaging biomarkers for the assessment of oncological treatment response. Our developments are available as open source software and hold considerable promise for increasing the accessibility to MRI, pending further prospective validation. Deutsche Forschungsgemeinschaft (German Research Foundation) and an Else Kröner Clinician Scientist Endowed Professorship by the Else Kröner Fresenius Foundation.</description><subject>Accuracy</subject><subject>Artificial Intelligence</subject><subject>Biomarkers</subject><subject>Brain research</subject><subject>Cancer</subject><subject>Cohort analysis</subject><subject>Cohort Studies</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Edema</subject><subject>Fourier transforms</subject><subject>Glioblastoma</subject><subject>Glioblastoma - diagnostic imaging</subject><subject>Glioma</subject><subject>Humans</subject><subject>Inverse problems</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Oncology</subject><subject>Patients</subject><subject>Retrospective Studies</subject><subject>Tumors</subject><issn>1470-2045</issn><issn>1474-5488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNqFkUlv1TAURiMEoqXwE0CW2BSJwPWUgQ1CZapUhMSwthz7BlwlduqhqP8ev_cKCzasPJ372b6naR5TeEGBdi-_UtFDy0DIU8afAXSCtvROc1y3RSvFMNzdzw_IUfMgpUsA2lOQ95sjPgjGQbLj5tdbxK1dUEfv_I920gktiWiCTzkWk13wJMykeIsx6XVb6vGnL-ckh0rZYpAkoz3JbsX0imiyliU7gz5HfF6JHEPasMZc16UJP0PMJOVibx4292a9JHx0O54039-_-3b2sb34_OH87M1Fa4SA3E4DGNsPdGBU8tEaJkYqJzlLS0cQfObSMmE4s13HO8rRiIFPAEIbC1M3MH7SnB5ytxiuCqasVpcMLov2GEpSbOSC9aJnUNGn_6CXoURfX6c48LGnQtIdJQ-UqV9LEWe1RbfqeKMoqJ0ZtTejdm1XjKu9GUVr3ZPb9DKtaP9W_VFRgdcHAGs7rh1GlYxDb9C66iMrG9x_rvgNdE6c8g</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Rastogi, Aditya</creator><creator>Brugnara, Gianluca</creator><creator>Foltyn-Dumitru, Martha</creator><creator>Mahmutoglu, Mustafa Ahmed</creator><creator>Preetha, Chandrakanth J</creator><creator>Kobler, Erich</creator><creator>Pflüger, Irada</creator><creator>Schell, Marianne</creator><creator>Deike-Hofmann, Katerina</creator><creator>Kessler, Tobias</creator><creator>van den Bent, Martin J</creator><creator>Idbaih, Ahmed</creator><creator>Platten, Michael</creator><creator>Brandes, Alba A</creator><creator>Nabors, Burt</creator><creator>Stupp, Roger</creator><creator>Bernhardt, Denise</creator><creator>Debus, Jürgen</creator><creator>Abdollahi, Amir</creator><creator>Gorlia, Thierry</creator><creator>Tonn, Jörg-Christian</creator><creator>Weller, Michael</creator><creator>Maier-Hein, Klaus H</creator><creator>Radbruch, Alexander</creator><creator>Wick, Wolfgang</creator><creator>Bendszus, Martin</creator><creator>Meredig, Hagen</creator><creator>Kurz, Felix T</creator><creator>Vollmuth, Philipp</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0TZ</scope><scope>3V.</scope><scope>7RV</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8C2</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20240301</creationdate><title>Deep-learning-based reconstruction of undersampled MRI to reduce scan times: a multicentre, retrospective, cohort study</title><author>Rastogi, Aditya ; Brugnara, Gianluca ; Foltyn-Dumitru, Martha ; Mahmutoglu, Mustafa Ahmed ; Preetha, Chandrakanth J ; Kobler, Erich ; Pflüger, Irada ; Schell, Marianne ; Deike-Hofmann, Katerina ; Kessler, Tobias ; van den Bent, Martin J ; Idbaih, Ahmed ; Platten, Michael ; Brandes, Alba A ; Nabors, Burt ; Stupp, Roger ; Bernhardt, Denise ; Debus, Jürgen ; Abdollahi, Amir ; Gorlia, Thierry ; Tonn, Jörg-Christian ; Weller, Michael ; Maier-Hein, Klaus H ; Radbruch, Alexander ; Wick, Wolfgang ; Bendszus, Martin ; Meredig, Hagen ; Kurz, Felix T ; Vollmuth, Philipp</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-b80cd781821539dc24915b5f5d19043f35d24c32d663613ec483b004acd0b6823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial Intelligence</topic><topic>Biomarkers</topic><topic>Brain research</topic><topic>Cancer</topic><topic>Cohort analysis</topic><topic>Cohort Studies</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Edema</topic><topic>Fourier transforms</topic><topic>Glioblastoma</topic><topic>Glioblastoma - diagnostic imaging</topic><topic>Glioma</topic><topic>Humans</topic><topic>Inverse problems</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Oncology</topic><topic>Patients</topic><topic>Retrospective Studies</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rastogi, Aditya</creatorcontrib><creatorcontrib>Brugnara, Gianluca</creatorcontrib><creatorcontrib>Foltyn-Dumitru, Martha</creatorcontrib><creatorcontrib>Mahmutoglu, Mustafa Ahmed</creatorcontrib><creatorcontrib>Preetha, Chandrakanth J</creatorcontrib><creatorcontrib>Kobler, Erich</creatorcontrib><creatorcontrib>Pflüger, Irada</creatorcontrib><creatorcontrib>Schell, Marianne</creatorcontrib><creatorcontrib>Deike-Hofmann, Katerina</creatorcontrib><creatorcontrib>Kessler, Tobias</creatorcontrib><creatorcontrib>van den Bent, Martin J</creatorcontrib><creatorcontrib>Idbaih, Ahmed</creatorcontrib><creatorcontrib>Platten, Michael</creatorcontrib><creatorcontrib>Brandes, Alba A</creatorcontrib><creatorcontrib>Nabors, Burt</creatorcontrib><creatorcontrib>Stupp, Roger</creatorcontrib><creatorcontrib>Bernhardt, Denise</creatorcontrib><creatorcontrib>Debus, Jürgen</creatorcontrib><creatorcontrib>Abdollahi, Amir</creatorcontrib><creatorcontrib>Gorlia, Thierry</creatorcontrib><creatorcontrib>Tonn, Jörg-Christian</creatorcontrib><creatorcontrib>Weller, Michael</creatorcontrib><creatorcontrib>Maier-Hein, Klaus H</creatorcontrib><creatorcontrib>Radbruch, Alexander</creatorcontrib><creatorcontrib>Wick, Wolfgang</creatorcontrib><creatorcontrib>Bendszus, Martin</creatorcontrib><creatorcontrib>Meredig, Hagen</creatorcontrib><creatorcontrib>Kurz, Felix T</creatorcontrib><creatorcontrib>Vollmuth, Philipp</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Pharma and Biotech Premium PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Lancet Titles</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>The lancet oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rastogi, Aditya</au><au>Brugnara, Gianluca</au><au>Foltyn-Dumitru, Martha</au><au>Mahmutoglu, Mustafa Ahmed</au><au>Preetha, Chandrakanth J</au><au>Kobler, Erich</au><au>Pflüger, Irada</au><au>Schell, Marianne</au><au>Deike-Hofmann, Katerina</au><au>Kessler, Tobias</au><au>van den Bent, Martin J</au><au>Idbaih, Ahmed</au><au>Platten, Michael</au><au>Brandes, Alba A</au><au>Nabors, Burt</au><au>Stupp, Roger</au><au>Bernhardt, Denise</au><au>Debus, Jürgen</au><au>Abdollahi, Amir</au><au>Gorlia, Thierry</au><au>Tonn, Jörg-Christian</au><au>Weller, Michael</au><au>Maier-Hein, Klaus H</au><au>Radbruch, Alexander</au><au>Wick, Wolfgang</au><au>Bendszus, Martin</au><au>Meredig, Hagen</au><au>Kurz, Felix T</au><au>Vollmuth, Philipp</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep-learning-based reconstruction of undersampled MRI to reduce scan times: a multicentre, retrospective, cohort study</atitle><jtitle>The lancet oncology</jtitle><addtitle>Lancet Oncol</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>25</volume><issue>3</issue><spage>400</spage><epage>410</epage><pages>400-410</pages><issn>1470-2045</issn><eissn>1474-5488</eissn><abstract>The extended acquisition times required for MRI limit its availability in resource-constrained settings. Consequently, accelerating MRI by undersampling k-space data, which is necessary to reconstruct an image, has been a long-standing but important challenge. We aimed to develop a deep convolutional neural network (dCNN) optimisation method for MRI reconstruction and to reduce scan times and evaluate its effect on image quality and accuracy of oncological imaging biomarkers. In this multicentre, retrospective, cohort study, MRI data from patients with glioblastoma treated at Heidelberg University Hospital (775 patients and 775 examinations) and from the phase 2 CORE trial (260 patients, 1083 examinations, and 58 institutions) and the phase 3 CENTRIC trial (505 patients, 3147 examinations, and 139 institutions) were used to develop, train, and test dCNN for reconstructing MRI from highly undersampled single-coil k-space data with various acceleration rates (R=2, 4, 6, 8, 10, and 15). Independent testing was performed with MRIs from the phase 2/3 EORTC-26101 trial (528 patients with glioblastoma, 1974 examinations, and 32 institutions). The similarity between undersampled dCNN-reconstructed and original MRIs was quantified with various image quality metrics, including structural similarity index measure (SSIM) and the accuracy of undersampled dCNN-reconstructed MRI on downstream radiological assessment of imaging biomarkers in oncology (automated artificial intelligence-based quantification of tumour burden and treatment response) was performed in the EORTC-26101 test dataset. The public NYU Langone Health fastMRI brain test dataset (558 patients and 558 examinations) was used to validate the generalisability and robustness of the dCNN for reconstructing MRIs from available multi-coil (parallel imaging) k-space data. In the EORTC-26101 test dataset, the median SSIM of undersampled dCNN-reconstructed MRI ranged from 0·88 to 0·99 across different acceleration rates, with 0·92 (95% CI 0·92–0·93) for 10-times acceleration (R=10). The 10-times undersampled dCNN-reconstructed MRI yielded excellent agreement with original MRI when assessing volumes of contrast-enhancing tumour (median DICE for spatial agreement of 0·89 [95% CI 0·88 to 0·89]; median volume difference of 0·01 cm3 [95% CI 0·00 to 0·03] equalling 0·21%; p=0·0036 for equivalence) or non-enhancing tumour or oedema (median DICE of 0·94 [95% CI 0·94 to 0·95]; median volume difference of –0·79 cm3 [95% CI –0·87 to –0·72] equalling –1·77%; p=0·023 for equivalence) in the EORTC-26101 test dataset. Automated volumetric tumour response assessment in the EORTC-26101 test dataset yielded an identical median time to progression of 4·27 months (95% CI 4·14 to 4·57) when using 10-times-undersampled dCNN-reconstructed or original MRI (log-rank p=0·80) and agreement in the time to progression in 374 (95·2%) of 393 patients with data. The dCNN generalised well to the fastMRI brain dataset, with significant improvements in the median SSIM when using multi-coil compared with single-coil k-space data (p&lt;0·0001). Deep-learning-based reconstruction of undersampled MRI allows for a substantial reduction of scan times, with a 10-times acceleration demonstrating excellent image quality while preserving the accuracy of derived imaging biomarkers for the assessment of oncological treatment response. Our developments are available as open source software and hold considerable promise for increasing the accessibility to MRI, pending further prospective validation. Deutsche Forschungsgemeinschaft (German Research Foundation) and an Else Kröner Clinician Scientist Endowed Professorship by the Else Kröner Fresenius Foundation.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38423052</pmid><doi>10.1016/S1470-2045(23)00641-1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1470-2045
ispartof The lancet oncology, 2024-03, Vol.25 (3), p.400-410
issn 1470-2045
1474-5488
language eng
recordid cdi_proquest_miscellaneous_2934274720
source MEDLINE; Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland
subjects Accuracy
Artificial Intelligence
Biomarkers
Brain research
Cancer
Cohort analysis
Cohort Studies
Datasets
Deep Learning
Edema
Fourier transforms
Glioblastoma
Glioblastoma - diagnostic imaging
Glioma
Humans
Inverse problems
Magnetic Resonance Imaging
Medical imaging
Neural networks
Neuroimaging
Oncology
Patients
Retrospective Studies
Tumors
title Deep-learning-based reconstruction of undersampled MRI to reduce scan times: a multicentre, retrospective, cohort study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep-learning-based%20reconstruction%20of%20undersampled%20MRI%20to%20reduce%20scan%20times:%20a%20multicentre,%20retrospective,%20cohort%20study&rft.jtitle=The%20lancet%20oncology&rft.au=Rastogi,%20Aditya&rft.date=2024-03-01&rft.volume=25&rft.issue=3&rft.spage=400&rft.epage=410&rft.pages=400-410&rft.issn=1470-2045&rft.eissn=1474-5488&rft_id=info:doi/10.1016/S1470-2045(23)00641-1&rft_dat=%3Cproquest_cross%3E3039714510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039714510&rft_id=info:pmid/38423052&rft_els_id=S1470204523006411&rfr_iscdi=true