Wave component analysis of energy flow in complex structures – Part II: ensemble statistics

A wave-based method is presented for the analysis of high-frequency vibrations in complex structures. The response of the structure to external forcing is described in terms of generalised, energy-bearing wave components, and the structure is represented by global subsystem and junction wave compone...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2005-07, Vol.285 (1), p.229-250
Hauptverfasser: Wester, E.C.N., Mace, B.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 250
container_issue 1
container_start_page 229
container_title Journal of sound and vibration
container_volume 285
creator Wester, E.C.N.
Mace, B.R.
description A wave-based method is presented for the analysis of high-frequency vibrations in complex structures. The response of the structure to external forcing is described in terms of generalised, energy-bearing wave components, and the structure is represented by global subsystem and junction wave component scattering matrices, S and T . Uncertainty in the properties of the structure is taken into account by assuming that the structure is drawn from an ensemble of structures that differ randomly in detail. A ‘scalar random phase’ ensemble is defined in terms of random eigenvalues of the product ST of the scattering matrices, and analytical expressions are derived for the average and variance of the energy responses over this ensemble. The scalar random phase ensemble is thought to be a reasonable approximation to many practical ensembles and the approach provides a means for estimating response statistics at relatively low computational cost.
doi_str_mv 10.1016/j.jsv.2004.08.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29342080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X04007114</els_id><sourcerecordid>1762107251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-acc19c174afe750bca3d928405e67d34f428f30711083202124b3a8dcf593bc23</originalsourceid><addsrcrecordid>eNqF0c1uEzEQB3ALUYlQeABuvoC47DL-2F0vnFDFR6RK9NAKLshyvGPkaLMbPE5KbrwDb8iT4JBK3MppLr_50PwZeyagFiDaV-t6TftaAugaTA2yfcAWAvqmMk1rHrIFgJSVbuHLI_aYaA0AvVZ6wb5-dnvkft5s5wmnzN3kxgNF4nPgOGH6duBhnG95nP6iEX9wymnn8y4h8d8_f_ErlzJfLl8XTrhZjViAy5Fy9PSEnQU3Ej69q-fs5v2764uP1eWnD8uLt5eV11Lnynkvei867QJ2Day8U0MvjYYG225QOmhpgoJOCDBKghRSr5Qzgw9Nr1ZeqnP24jR3m-bvO6RsN5E8jqObcN6Rlb3SEgwU-PJeKLpWCuhkI_5PwchyslJHKk7Up5koYbDbFDcuHQqyx3js2pZ47DEeC8aWeErP87vxjrwbQ3KTj_SvsTUKWnF0b04Oy__2EZMlH3HyOMSEPtthjvds-QO4HKUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082174331</pqid></control><display><type>article</type><title>Wave component analysis of energy flow in complex structures – Part II: ensemble statistics</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Wester, E.C.N. ; Mace, B.R.</creator><creatorcontrib>Wester, E.C.N. ; Mace, B.R.</creatorcontrib><description>A wave-based method is presented for the analysis of high-frequency vibrations in complex structures. The response of the structure to external forcing is described in terms of generalised, energy-bearing wave components, and the structure is represented by global subsystem and junction wave component scattering matrices, S and T . Uncertainty in the properties of the structure is taken into account by assuming that the structure is drawn from an ensemble of structures that differ randomly in detail. A ‘scalar random phase’ ensemble is defined in terms of random eigenvalues of the product ST of the scattering matrices, and analytical expressions are derived for the average and variance of the energy responses over this ensemble. The scalar random phase ensemble is thought to be a reasonable approximation to many practical ensembles and the approach provides a means for estimating response statistics at relatively low computational cost.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2004.08.026</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Computational efficiency ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Matrices ; Matrix methods ; Physics ; Scalars ; Scattering ; Solid mechanics ; Statistics ; Structural and continuum mechanics ; Vibration ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of sound and vibration, 2005-07, Vol.285 (1), p.229-250</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-acc19c174afe750bca3d928405e67d34f428f30711083202124b3a8dcf593bc23</citedby><cites>FETCH-LOGICAL-c424t-acc19c174afe750bca3d928405e67d34f428f30711083202124b3a8dcf593bc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2004.08.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16830616$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wester, E.C.N.</creatorcontrib><creatorcontrib>Mace, B.R.</creatorcontrib><title>Wave component analysis of energy flow in complex structures – Part II: ensemble statistics</title><title>Journal of sound and vibration</title><description>A wave-based method is presented for the analysis of high-frequency vibrations in complex structures. The response of the structure to external forcing is described in terms of generalised, energy-bearing wave components, and the structure is represented by global subsystem and junction wave component scattering matrices, S and T . Uncertainty in the properties of the structure is taken into account by assuming that the structure is drawn from an ensemble of structures that differ randomly in detail. A ‘scalar random phase’ ensemble is defined in terms of random eigenvalues of the product ST of the scattering matrices, and analytical expressions are derived for the average and variance of the energy responses over this ensemble. The scalar random phase ensemble is thought to be a reasonable approximation to many practical ensembles and the approach provides a means for estimating response statistics at relatively low computational cost.</description><subject>Computational efficiency</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Physics</subject><subject>Scalars</subject><subject>Scattering</subject><subject>Solid mechanics</subject><subject>Statistics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqF0c1uEzEQB3ALUYlQeABuvoC47DL-2F0vnFDFR6RK9NAKLshyvGPkaLMbPE5KbrwDb8iT4JBK3MppLr_50PwZeyagFiDaV-t6TftaAugaTA2yfcAWAvqmMk1rHrIFgJSVbuHLI_aYaA0AvVZ6wb5-dnvkft5s5wmnzN3kxgNF4nPgOGH6duBhnG95nP6iEX9wymnn8y4h8d8_f_ErlzJfLl8XTrhZjViAy5Fy9PSEnQU3Ej69q-fs5v2764uP1eWnD8uLt5eV11Lnynkvei867QJ2Day8U0MvjYYG225QOmhpgoJOCDBKghRSr5Qzgw9Nr1ZeqnP24jR3m-bvO6RsN5E8jqObcN6Rlb3SEgwU-PJeKLpWCuhkI_5PwchyslJHKk7Up5koYbDbFDcuHQqyx3js2pZ47DEeC8aWeErP87vxjrwbQ3KTj_SvsTUKWnF0b04Oy__2EZMlH3HyOMSEPtthjvds-QO4HKUs</recordid><startdate>20050706</startdate><enddate>20050706</enddate><creator>Wester, E.C.N.</creator><creator>Mace, B.R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20050706</creationdate><title>Wave component analysis of energy flow in complex structures – Part II: ensemble statistics</title><author>Wester, E.C.N. ; Mace, B.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-acc19c174afe750bca3d928405e67d34f428f30711083202124b3a8dcf593bc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computational efficiency</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Physics</topic><topic>Scalars</topic><topic>Scattering</topic><topic>Solid mechanics</topic><topic>Statistics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wester, E.C.N.</creatorcontrib><creatorcontrib>Mace, B.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wester, E.C.N.</au><au>Mace, B.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave component analysis of energy flow in complex structures – Part II: ensemble statistics</atitle><jtitle>Journal of sound and vibration</jtitle><date>2005-07-06</date><risdate>2005</risdate><volume>285</volume><issue>1</issue><spage>229</spage><epage>250</epage><pages>229-250</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>A wave-based method is presented for the analysis of high-frequency vibrations in complex structures. The response of the structure to external forcing is described in terms of generalised, energy-bearing wave components, and the structure is represented by global subsystem and junction wave component scattering matrices, S and T . Uncertainty in the properties of the structure is taken into account by assuming that the structure is drawn from an ensemble of structures that differ randomly in detail. A ‘scalar random phase’ ensemble is defined in terms of random eigenvalues of the product ST of the scattering matrices, and analytical expressions are derived for the average and variance of the energy responses over this ensemble. The scalar random phase ensemble is thought to be a reasonable approximation to many practical ensembles and the approach provides a means for estimating response statistics at relatively low computational cost.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2004.08.026</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2005-07, Vol.285 (1), p.229-250
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_miscellaneous_29342080
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Computational efficiency
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Mathematical analysis
Matrices
Matrix methods
Physics
Scalars
Scattering
Solid mechanics
Statistics
Structural and continuum mechanics
Vibration
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Wave component analysis of energy flow in complex structures – Part II: ensemble statistics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave%20component%20analysis%20of%20energy%20flow%20in%20complex%20structures%20%E2%80%93%20Part%20II:%20ensemble%20statistics&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Wester,%20E.C.N.&rft.date=2005-07-06&rft.volume=285&rft.issue=1&rft.spage=229&rft.epage=250&rft.pages=229-250&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/j.jsv.2004.08.026&rft_dat=%3Cproquest_cross%3E1762107251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082174331&rft_id=info:pmid/&rft_els_id=S0022460X04007114&rfr_iscdi=true