Wave component analysis of energy flow in complex structures – Part II: ensemble statistics
A wave-based method is presented for the analysis of high-frequency vibrations in complex structures. The response of the structure to external forcing is described in terms of generalised, energy-bearing wave components, and the structure is represented by global subsystem and junction wave compone...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2005-07, Vol.285 (1), p.229-250 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 250 |
---|---|
container_issue | 1 |
container_start_page | 229 |
container_title | Journal of sound and vibration |
container_volume | 285 |
creator | Wester, E.C.N. Mace, B.R. |
description | A wave-based method is presented for the analysis of high-frequency vibrations in complex structures. The response of the structure to external forcing is described in terms of generalised, energy-bearing wave components, and the structure is represented by global subsystem and junction wave component scattering matrices,
S
and
T
. Uncertainty in the properties of the structure is taken into account by assuming that the structure is drawn from an ensemble of structures that differ randomly in detail. A ‘scalar random phase’ ensemble is defined in terms of random eigenvalues of the product
ST
of the scattering matrices, and analytical expressions are derived for the average and variance of the energy responses over this ensemble. The scalar random phase ensemble is thought to be a reasonable approximation to many practical ensembles and the approach provides a means for estimating response statistics at relatively low computational cost. |
doi_str_mv | 10.1016/j.jsv.2004.08.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29342080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X04007114</els_id><sourcerecordid>1762107251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-acc19c174afe750bca3d928405e67d34f428f30711083202124b3a8dcf593bc23</originalsourceid><addsrcrecordid>eNqF0c1uEzEQB3ALUYlQeABuvoC47DL-2F0vnFDFR6RK9NAKLshyvGPkaLMbPE5KbrwDb8iT4JBK3MppLr_50PwZeyagFiDaV-t6TftaAugaTA2yfcAWAvqmMk1rHrIFgJSVbuHLI_aYaA0AvVZ6wb5-dnvkft5s5wmnzN3kxgNF4nPgOGH6duBhnG95nP6iEX9wymnn8y4h8d8_f_ErlzJfLl8XTrhZjViAy5Fy9PSEnQU3Ej69q-fs5v2764uP1eWnD8uLt5eV11Lnynkvei867QJ2Day8U0MvjYYG225QOmhpgoJOCDBKghRSr5Qzgw9Nr1ZeqnP24jR3m-bvO6RsN5E8jqObcN6Rlb3SEgwU-PJeKLpWCuhkI_5PwchyslJHKk7Up5koYbDbFDcuHQqyx3js2pZ47DEeC8aWeErP87vxjrwbQ3KTj_SvsTUKWnF0b04Oy__2EZMlH3HyOMSEPtthjvds-QO4HKUs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082174331</pqid></control><display><type>article</type><title>Wave component analysis of energy flow in complex structures – Part II: ensemble statistics</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Wester, E.C.N. ; Mace, B.R.</creator><creatorcontrib>Wester, E.C.N. ; Mace, B.R.</creatorcontrib><description>A wave-based method is presented for the analysis of high-frequency vibrations in complex structures. The response of the structure to external forcing is described in terms of generalised, energy-bearing wave components, and the structure is represented by global subsystem and junction wave component scattering matrices,
S
and
T
. Uncertainty in the properties of the structure is taken into account by assuming that the structure is drawn from an ensemble of structures that differ randomly in detail. A ‘scalar random phase’ ensemble is defined in terms of random eigenvalues of the product
ST
of the scattering matrices, and analytical expressions are derived for the average and variance of the energy responses over this ensemble. The scalar random phase ensemble is thought to be a reasonable approximation to many practical ensembles and the approach provides a means for estimating response statistics at relatively low computational cost.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2004.08.026</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Computational efficiency ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Mathematical analysis ; Matrices ; Matrix methods ; Physics ; Scalars ; Scattering ; Solid mechanics ; Statistics ; Structural and continuum mechanics ; Vibration ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of sound and vibration, 2005-07, Vol.285 (1), p.229-250</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-acc19c174afe750bca3d928405e67d34f428f30711083202124b3a8dcf593bc23</citedby><cites>FETCH-LOGICAL-c424t-acc19c174afe750bca3d928405e67d34f428f30711083202124b3a8dcf593bc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2004.08.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16830616$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wester, E.C.N.</creatorcontrib><creatorcontrib>Mace, B.R.</creatorcontrib><title>Wave component analysis of energy flow in complex structures – Part II: ensemble statistics</title><title>Journal of sound and vibration</title><description>A wave-based method is presented for the analysis of high-frequency vibrations in complex structures. The response of the structure to external forcing is described in terms of generalised, energy-bearing wave components, and the structure is represented by global subsystem and junction wave component scattering matrices,
S
and
T
. Uncertainty in the properties of the structure is taken into account by assuming that the structure is drawn from an ensemble of structures that differ randomly in detail. A ‘scalar random phase’ ensemble is defined in terms of random eigenvalues of the product
ST
of the scattering matrices, and analytical expressions are derived for the average and variance of the energy responses over this ensemble. The scalar random phase ensemble is thought to be a reasonable approximation to many practical ensembles and the approach provides a means for estimating response statistics at relatively low computational cost.</description><subject>Computational efficiency</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix methods</subject><subject>Physics</subject><subject>Scalars</subject><subject>Scattering</subject><subject>Solid mechanics</subject><subject>Statistics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqF0c1uEzEQB3ALUYlQeABuvoC47DL-2F0vnFDFR6RK9NAKLshyvGPkaLMbPE5KbrwDb8iT4JBK3MppLr_50PwZeyagFiDaV-t6TftaAugaTA2yfcAWAvqmMk1rHrIFgJSVbuHLI_aYaA0AvVZ6wb5-dnvkft5s5wmnzN3kxgNF4nPgOGH6duBhnG95nP6iEX9wymnn8y4h8d8_f_ErlzJfLl8XTrhZjViAy5Fy9PSEnQU3Ej69q-fs5v2764uP1eWnD8uLt5eV11Lnynkvei867QJ2Day8U0MvjYYG225QOmhpgoJOCDBKghRSr5Qzgw9Nr1ZeqnP24jR3m-bvO6RsN5E8jqObcN6Rlb3SEgwU-PJeKLpWCuhkI_5PwchyslJHKk7Up5koYbDbFDcuHQqyx3js2pZ47DEeC8aWeErP87vxjrwbQ3KTj_SvsTUKWnF0b04Oy__2EZMlH3HyOMSEPtthjvds-QO4HKUs</recordid><startdate>20050706</startdate><enddate>20050706</enddate><creator>Wester, E.C.N.</creator><creator>Mace, B.R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20050706</creationdate><title>Wave component analysis of energy flow in complex structures – Part II: ensemble statistics</title><author>Wester, E.C.N. ; Mace, B.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-acc19c174afe750bca3d928405e67d34f428f30711083202124b3a8dcf593bc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Computational efficiency</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix methods</topic><topic>Physics</topic><topic>Scalars</topic><topic>Scattering</topic><topic>Solid mechanics</topic><topic>Statistics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wester, E.C.N.</creatorcontrib><creatorcontrib>Mace, B.R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wester, E.C.N.</au><au>Mace, B.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wave component analysis of energy flow in complex structures – Part II: ensemble statistics</atitle><jtitle>Journal of sound and vibration</jtitle><date>2005-07-06</date><risdate>2005</risdate><volume>285</volume><issue>1</issue><spage>229</spage><epage>250</epage><pages>229-250</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>A wave-based method is presented for the analysis of high-frequency vibrations in complex structures. The response of the structure to external forcing is described in terms of generalised, energy-bearing wave components, and the structure is represented by global subsystem and junction wave component scattering matrices,
S
and
T
. Uncertainty in the properties of the structure is taken into account by assuming that the structure is drawn from an ensemble of structures that differ randomly in detail. A ‘scalar random phase’ ensemble is defined in terms of random eigenvalues of the product
ST
of the scattering matrices, and analytical expressions are derived for the average and variance of the energy responses over this ensemble. The scalar random phase ensemble is thought to be a reasonable approximation to many practical ensembles and the approach provides a means for estimating response statistics at relatively low computational cost.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2004.08.026</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2005-07, Vol.285 (1), p.229-250 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_proquest_miscellaneous_29342080 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Computational efficiency Exact sciences and technology Fundamental areas of phenomenology (including applications) Mathematical analysis Matrices Matrix methods Physics Scalars Scattering Solid mechanics Statistics Structural and continuum mechanics Vibration Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | Wave component analysis of energy flow in complex structures – Part II: ensemble statistics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A12%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wave%20component%20analysis%20of%20energy%20flow%20in%20complex%20structures%20%E2%80%93%20Part%20II:%20ensemble%20statistics&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Wester,%20E.C.N.&rft.date=2005-07-06&rft.volume=285&rft.issue=1&rft.spage=229&rft.epage=250&rft.pages=229-250&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/j.jsv.2004.08.026&rft_dat=%3Cproquest_cross%3E1762107251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082174331&rft_id=info:pmid/&rft_els_id=S0022460X04007114&rfr_iscdi=true |