Modeling of compression-induced splitting failure in heterogeneous brittle porous solids

Brittle solids, such as rock or concrete, may contain numerous randomly distributed micro-flaws (e.g. cracks, pores or weak inclusions). When they are loaded in compression, cracks may nucleate from these flaws. These cracks then continue to grow in a stable manner with the increasing axial compress...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 2005-03, Vol.72 (4), p.597-615
Hauptverfasser: Tang, C.A., Wong, R.H.C., Chau, K.T., Lin, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 615
container_issue 4
container_start_page 597
container_title Engineering fracture mechanics
container_volume 72
creator Tang, C.A.
Wong, R.H.C.
Chau, K.T.
Lin, P.
description Brittle solids, such as rock or concrete, may contain numerous randomly distributed micro-flaws (e.g. cracks, pores or weak inclusions). When they are loaded in compression, cracks may nucleate from these flaws. These cracks then continue to grow in a stable manner with the increasing axial compression, curving toward an orientation parallel to the direction of axial compression. Their propagation and interaction may lead to the collapse of the solid in a splitting mode. With a newly developed numerical code, MFPA 2D (material failure process analysis), heterogeneous solids containing pre-existing single, triple and multi-pore-like flaws are numerically tested to study the mechanisms of compression-induced axial splitting. The interaction of growing cracks with the surfaces of the specimen and with each other in terms of stress field and failure modes is numerically analyzed in detail. Under uniaxial compressions, specimens containing holes in a diagonal array are more conducive to interaction than specimens containing holes arranged either in a horizontal or vertical array. Various parameters, such as hole diameter, specimen width, and the geometrical arrangement of hole locations, that characterize the growth process are quantified. Numerical results mimic the phenomena of experimentally observed splitting failure in brittle solids such as rocks in a realistic way.
doi_str_mv 10.1016/j.engfracmech.2004.04.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29341825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013794404001201</els_id><sourcerecordid>29341825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-ff4e55da124b3d3bc9617ce4fc3efb4f693c7efeb8eeaa7b02e04f9677cf2b5f3</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouK7-h3rQW2vSpE17lMUvWPGi4C2k6WQ3S9rUpBX896bugh6FgZmBZ-adeRG6JDgjmJQ3uwz6jfZSdaC2WY4xy-bA1RFakIrTlFNSHKMFxiTWNWOn6CyEHcaYlxVeoPdn14I1_SZxOlGuGzyEYFyfmr6dFLRJGKwZxxnQ0tjJQ2L6ZAsjeLeBHtwUksZHwkIyOD-3wVnThnN0oqUNcHHIS_R2f_e6ekzXLw9Pq9t1qhgrx1RrBkXRSpKzhra0UXVJuAKmFQXdMF3WVHHQ0FQAUvIG54CZrkvOlc6bQtMlut7vHbz7mCCMojNBgbXy5ziR15SRKi8iWO9B5V0IHrQYvOmk_xIEi9lLsRN_vBSzl2IOXMXZq4OIDErayPTKhN8FJcM0L0jkVnsO4sefBrwIykAffTQe1ChaZ_6h9g27_5PL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29341825</pqid></control><display><type>article</type><title>Modeling of compression-induced splitting failure in heterogeneous brittle porous solids</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Tang, C.A. ; Wong, R.H.C. ; Chau, K.T. ; Lin, P.</creator><creatorcontrib>Tang, C.A. ; Wong, R.H.C. ; Chau, K.T. ; Lin, P.</creatorcontrib><description>Brittle solids, such as rock or concrete, may contain numerous randomly distributed micro-flaws (e.g. cracks, pores or weak inclusions). When they are loaded in compression, cracks may nucleate from these flaws. These cracks then continue to grow in a stable manner with the increasing axial compression, curving toward an orientation parallel to the direction of axial compression. Their propagation and interaction may lead to the collapse of the solid in a splitting mode. With a newly developed numerical code, MFPA 2D (material failure process analysis), heterogeneous solids containing pre-existing single, triple and multi-pore-like flaws are numerically tested to study the mechanisms of compression-induced axial splitting. The interaction of growing cracks with the surfaces of the specimen and with each other in terms of stress field and failure modes is numerically analyzed in detail. Under uniaxial compressions, specimens containing holes in a diagonal array are more conducive to interaction than specimens containing holes arranged either in a horizontal or vertical array. Various parameters, such as hole diameter, specimen width, and the geometrical arrangement of hole locations, that characterize the growth process are quantified. Numerical results mimic the phenomena of experimentally observed splitting failure in brittle solids such as rocks in a realistic way.</description><identifier>ISSN: 0013-7944</identifier><identifier>EISSN: 1873-7315</identifier><identifier>DOI: 10.1016/j.engfracmech.2004.04.008</identifier><identifier>CODEN: EFMEAH</identifier><language>eng</language><publisher>Tarrytown, NY: Elsevier Ltd</publisher><subject>Coalescence ; Exact sciences and technology ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Numerical simulation ; Physics ; Porous solid ; Solid mechanics ; Splitting ; Structural and continuum mechanics ; Wing crack</subject><ispartof>Engineering fracture mechanics, 2005-03, Vol.72 (4), p.597-615</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-ff4e55da124b3d3bc9617ce4fc3efb4f693c7efeb8eeaa7b02e04f9677cf2b5f3</citedby><cites>FETCH-LOGICAL-c446t-ff4e55da124b3d3bc9617ce4fc3efb4f693c7efeb8eeaa7b02e04f9677cf2b5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.engfracmech.2004.04.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16403251$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, C.A.</creatorcontrib><creatorcontrib>Wong, R.H.C.</creatorcontrib><creatorcontrib>Chau, K.T.</creatorcontrib><creatorcontrib>Lin, P.</creatorcontrib><title>Modeling of compression-induced splitting failure in heterogeneous brittle porous solids</title><title>Engineering fracture mechanics</title><description>Brittle solids, such as rock or concrete, may contain numerous randomly distributed micro-flaws (e.g. cracks, pores or weak inclusions). When they are loaded in compression, cracks may nucleate from these flaws. These cracks then continue to grow in a stable manner with the increasing axial compression, curving toward an orientation parallel to the direction of axial compression. Their propagation and interaction may lead to the collapse of the solid in a splitting mode. With a newly developed numerical code, MFPA 2D (material failure process analysis), heterogeneous solids containing pre-existing single, triple and multi-pore-like flaws are numerically tested to study the mechanisms of compression-induced axial splitting. The interaction of growing cracks with the surfaces of the specimen and with each other in terms of stress field and failure modes is numerically analyzed in detail. Under uniaxial compressions, specimens containing holes in a diagonal array are more conducive to interaction than specimens containing holes arranged either in a horizontal or vertical array. Various parameters, such as hole diameter, specimen width, and the geometrical arrangement of hole locations, that characterize the growth process are quantified. Numerical results mimic the phenomena of experimentally observed splitting failure in brittle solids such as rocks in a realistic way.</description><subject>Coalescence</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Numerical simulation</subject><subject>Physics</subject><subject>Porous solid</subject><subject>Solid mechanics</subject><subject>Splitting</subject><subject>Structural and continuum mechanics</subject><subject>Wing crack</subject><issn>0013-7944</issn><issn>1873-7315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkE1LxDAQhoMouK7-h3rQW2vSpE17lMUvWPGi4C2k6WQ3S9rUpBX896bugh6FgZmBZ-adeRG6JDgjmJQ3uwz6jfZSdaC2WY4xy-bA1RFakIrTlFNSHKMFxiTWNWOn6CyEHcaYlxVeoPdn14I1_SZxOlGuGzyEYFyfmr6dFLRJGKwZxxnQ0tjJQ2L6ZAsjeLeBHtwUksZHwkIyOD-3wVnThnN0oqUNcHHIS_R2f_e6ekzXLw9Pq9t1qhgrx1RrBkXRSpKzhra0UXVJuAKmFQXdMF3WVHHQ0FQAUvIG54CZrkvOlc6bQtMlut7vHbz7mCCMojNBgbXy5ziR15SRKi8iWO9B5V0IHrQYvOmk_xIEi9lLsRN_vBSzl2IOXMXZq4OIDErayPTKhN8FJcM0L0jkVnsO4sefBrwIykAffTQe1ChaZ_6h9g27_5PL</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Tang, C.A.</creator><creator>Wong, R.H.C.</creator><creator>Chau, K.T.</creator><creator>Lin, P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20050301</creationdate><title>Modeling of compression-induced splitting failure in heterogeneous brittle porous solids</title><author>Tang, C.A. ; Wong, R.H.C. ; Chau, K.T. ; Lin, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-ff4e55da124b3d3bc9617ce4fc3efb4f693c7efeb8eeaa7b02e04f9677cf2b5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Coalescence</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Numerical simulation</topic><topic>Physics</topic><topic>Porous solid</topic><topic>Solid mechanics</topic><topic>Splitting</topic><topic>Structural and continuum mechanics</topic><topic>Wing crack</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, C.A.</creatorcontrib><creatorcontrib>Wong, R.H.C.</creatorcontrib><creatorcontrib>Chau, K.T.</creatorcontrib><creatorcontrib>Lin, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Engineering fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, C.A.</au><au>Wong, R.H.C.</au><au>Chau, K.T.</au><au>Lin, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of compression-induced splitting failure in heterogeneous brittle porous solids</atitle><jtitle>Engineering fracture mechanics</jtitle><date>2005-03-01</date><risdate>2005</risdate><volume>72</volume><issue>4</issue><spage>597</spage><epage>615</epage><pages>597-615</pages><issn>0013-7944</issn><eissn>1873-7315</eissn><coden>EFMEAH</coden><abstract>Brittle solids, such as rock or concrete, may contain numerous randomly distributed micro-flaws (e.g. cracks, pores or weak inclusions). When they are loaded in compression, cracks may nucleate from these flaws. These cracks then continue to grow in a stable manner with the increasing axial compression, curving toward an orientation parallel to the direction of axial compression. Their propagation and interaction may lead to the collapse of the solid in a splitting mode. With a newly developed numerical code, MFPA 2D (material failure process analysis), heterogeneous solids containing pre-existing single, triple and multi-pore-like flaws are numerically tested to study the mechanisms of compression-induced axial splitting. The interaction of growing cracks with the surfaces of the specimen and with each other in terms of stress field and failure modes is numerically analyzed in detail. Under uniaxial compressions, specimens containing holes in a diagonal array are more conducive to interaction than specimens containing holes arranged either in a horizontal or vertical array. Various parameters, such as hole diameter, specimen width, and the geometrical arrangement of hole locations, that characterize the growth process are quantified. Numerical results mimic the phenomena of experimentally observed splitting failure in brittle solids such as rocks in a realistic way.</abstract><cop>Tarrytown, NY</cop><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.engfracmech.2004.04.008</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-7944
ispartof Engineering fracture mechanics, 2005-03, Vol.72 (4), p.597-615
issn 0013-7944
1873-7315
language eng
recordid cdi_proquest_miscellaneous_29341825
source Elsevier ScienceDirect Journals Complete
subjects Coalescence
Exact sciences and technology
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Numerical simulation
Physics
Porous solid
Solid mechanics
Splitting
Structural and continuum mechanics
Wing crack
title Modeling of compression-induced splitting failure in heterogeneous brittle porous solids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20compression-induced%20splitting%20failure%20in%20heterogeneous%20brittle%20porous%20solids&rft.jtitle=Engineering%20fracture%20mechanics&rft.au=Tang,%20C.A.&rft.date=2005-03-01&rft.volume=72&rft.issue=4&rft.spage=597&rft.epage=615&rft.pages=597-615&rft.issn=0013-7944&rft.eissn=1873-7315&rft.coden=EFMEAH&rft_id=info:doi/10.1016/j.engfracmech.2004.04.008&rft_dat=%3Cproquest_cross%3E29341825%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29341825&rft_id=info:pmid/&rft_els_id=S0013794404001201&rfr_iscdi=true