A Degree-Dependent Polynomial-Based Reciprocally Convex Matrix Inequality and Its Application to Stability Analysis of Delayed Neural Networks
In this article, several improved stability criteria for time-varying delayed neural networks (DNNs) are proposed. A degree-dependent polynomial-based reciprocally convex matrix inequality (RCMI) is proposed for obtaining less conservative stability criteria. Unlike previous RCMIs, the matrix inequa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2024-07, Vol.54 (7), p.4164-4176 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!