A Degree-Dependent Polynomial-Based Reciprocally Convex Matrix Inequality and Its Application to Stability Analysis of Delayed Neural Networks

In this article, several improved stability criteria for time-varying delayed neural networks (DNNs) are proposed. A degree-dependent polynomial-based reciprocally convex matrix inequality (RCMI) is proposed for obtaining less conservative stability criteria. Unlike previous RCMIs, the matrix inequa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2024-07, Vol.54 (7), p.4164-4176
Hauptverfasser: Wang, Chen-Rui, Long, Fei, Xie, Ke-You, Wang, Hui-Ting, Zhang, Chuan-Ke, He, Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!