Bio‐inspired Two‐dimensional Nanofluidic Ionic Transistor for Neuromorphic Signal Processing
Voltage‐gated ion channels prevalent in neurons play important roles in generating action potential and information transmission by responding to transmembrane potential. Fabricating bio‐inspired ionic transistors with ions as charge carriers will be crucial for realizing neuro‐inspired devices and...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2024-04, Vol.63 (17), p.e202401477-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 17 |
container_start_page | e202401477 |
container_title | Angewandte Chemie International Edition |
container_volume | 63 |
creator | Mei, Tingting Liu, Wenchao Sun, Fusai Chen, Yuanxia Xu, Guoheng Huang, Zijia Jiang, Yisha Wang, Senyao Chen, Lu Liu, Junjun Fan, Fengtao Xiao, Kai |
description | Voltage‐gated ion channels prevalent in neurons play important roles in generating action potential and information transmission by responding to transmembrane potential. Fabricating bio‐inspired ionic transistors with ions as charge carriers will be crucial for realizing neuro‐inspired devices and brain‐liking computing. Here, we reported a two‐dimensional nanofluidic ionic transistor based on a MXene membrane with sub‐1 nm interlayer channels. By applying a gating voltage on the MXene nanofluidic, a transmembrane potential will be generated to active the ionic transistor, which is similar to the transmembrane potential of neuron cells and can be effectively regulated by changing membrane parameters, e.g., thickness, composition, and interlayer spacing. For the symmetric MXene nanofluidic, a high on/off ratio of ~2000 can be achieved by forming an ionic depletion or accumulation zone, contingent on the sign of the gating potential. An asymmetric PET/MXene‐composited nanofluidic transitioned the ionic transistor from ambipolar to unipolar, resulting in a more sensitive gate voltage characteristic with a low subthreshold swing of 560 mV/decade. Furthermore, ionic logic gate circuits, including the “NOT”, “NAND”, and “NOR” gate, were implemented for neuromorphic signal processing successfully, which provides a promising pathway towards highly parallel, low energy consumption, and ion‐based brain‐like computing.
Inspired by voltage‐gated ion channels in neurons, a two‐dimensional nanofluidic ionic transistor was fabricated, which operates based on the response to transmembrane potential. The device demonstrates a high on/off ratio of ~2000 and can transition from ambipolar to unipolar behavior with a low subthreshold swing of 560 mV/decade. The successful implementation of ionic logic gate circuits, including “NOT”, “NAND”, and “NOR” gates, paves a promising pathway towards ion‐based brain‐like computing. |
doi_str_mv | 10.1002/anie.202401477 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2933461790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933461790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3737-41890bc8bdb3a85a583b34a591be9057593c5dced76afb79069d035f805bbecc3</originalsourceid><addsrcrecordid>eNqFkM1OAyEUhYnR-L91aZq4cTMV5g4DLLXxp0lTTaxrBIZRzMxQwYlx5yP4jD6JNK2auHEBXHK-c3JzEDogeEgwzk9U5-wwx3mBScHYGtomNCcZMAbraS4AMsYp2UI7MT4lnnNcbqIt4AURRSm20f2Z85_vH66LcxdsNZi9Lr6Va20Xne9UM5iqztdN7ypnBmPfpXsWVBLjiw-DOp2p7YNvfZg_Ju3WPSxMN8EbG6PrHvbQRq2aaPdX7y66uzifja6yyfXleHQ6yQwwYFlBuMDacF1pUJwqykFDoagg2gpMGRVgaGVsxUpVayZwKSoMtOaYam2NgV10vMydB__c2_giWxeNbRrVWd9HmQuAoiTJmdCjP-iT70NaO0rAwAFzjHmihkvKBB9jsLWcB9eq8CYJlovu5aJ7-dN9MhyuYnvd2uoH_y47AWIJvLrGvv0TJ0-n4_Pf8C-YgpMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038308008</pqid></control><display><type>article</type><title>Bio‐inspired Two‐dimensional Nanofluidic Ionic Transistor for Neuromorphic Signal Processing</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Mei, Tingting ; Liu, Wenchao ; Sun, Fusai ; Chen, Yuanxia ; Xu, Guoheng ; Huang, Zijia ; Jiang, Yisha ; Wang, Senyao ; Chen, Lu ; Liu, Junjun ; Fan, Fengtao ; Xiao, Kai</creator><creatorcontrib>Mei, Tingting ; Liu, Wenchao ; Sun, Fusai ; Chen, Yuanxia ; Xu, Guoheng ; Huang, Zijia ; Jiang, Yisha ; Wang, Senyao ; Chen, Lu ; Liu, Junjun ; Fan, Fengtao ; Xiao, Kai</creatorcontrib><description>Voltage‐gated ion channels prevalent in neurons play important roles in generating action potential and information transmission by responding to transmembrane potential. Fabricating bio‐inspired ionic transistors with ions as charge carriers will be crucial for realizing neuro‐inspired devices and brain‐liking computing. Here, we reported a two‐dimensional nanofluidic ionic transistor based on a MXene membrane with sub‐1 nm interlayer channels. By applying a gating voltage on the MXene nanofluidic, a transmembrane potential will be generated to active the ionic transistor, which is similar to the transmembrane potential of neuron cells and can be effectively regulated by changing membrane parameters, e.g., thickness, composition, and interlayer spacing. For the symmetric MXene nanofluidic, a high on/off ratio of ~2000 can be achieved by forming an ionic depletion or accumulation zone, contingent on the sign of the gating potential. An asymmetric PET/MXene‐composited nanofluidic transitioned the ionic transistor from ambipolar to unipolar, resulting in a more sensitive gate voltage characteristic with a low subthreshold swing of 560 mV/decade. Furthermore, ionic logic gate circuits, including the “NOT”, “NAND”, and “NOR” gate, were implemented for neuromorphic signal processing successfully, which provides a promising pathway towards highly parallel, low energy consumption, and ion‐based brain‐like computing.
Inspired by voltage‐gated ion channels in neurons, a two‐dimensional nanofluidic ionic transistor was fabricated, which operates based on the response to transmembrane potential. The device demonstrates a high on/off ratio of ~2000 and can transition from ambipolar to unipolar behavior with a low subthreshold swing of 560 mV/decade. The successful implementation of ionic logic gate circuits, including “NOT”, “NAND”, and “NOR” gates, paves a promising pathway towards ion‐based brain‐like computing.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202401477</identifier><identifier>PMID: 38419469</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Action potential ; Action Potentials ; Brain ; Channel gating ; Current carriers ; Electric potential ; Energy consumption ; Fluidics ; Gates (circuits) ; Information processing ; Interlayers ; Ion channels ; Ionic circuit ; Ionic transistors ; Ions ; Logic circuits ; Membrane potential ; Membrane Potentials ; Membranes ; MXene ; MXenes ; Nanofluidic ; Nanofluids ; Nitrites ; Signal processing ; Transistors ; Transition Elements ; Two-dimensional materials ; Voltage</subject><ispartof>Angewandte Chemie International Edition, 2024-04, Vol.63 (17), p.e202401477-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3737-41890bc8bdb3a85a583b34a591be9057593c5dced76afb79069d035f805bbecc3</citedby><cites>FETCH-LOGICAL-c3737-41890bc8bdb3a85a583b34a591be9057593c5dced76afb79069d035f805bbecc3</cites><orcidid>0000-0001-9829-2707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202401477$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202401477$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38419469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mei, Tingting</creatorcontrib><creatorcontrib>Liu, Wenchao</creatorcontrib><creatorcontrib>Sun, Fusai</creatorcontrib><creatorcontrib>Chen, Yuanxia</creatorcontrib><creatorcontrib>Xu, Guoheng</creatorcontrib><creatorcontrib>Huang, Zijia</creatorcontrib><creatorcontrib>Jiang, Yisha</creatorcontrib><creatorcontrib>Wang, Senyao</creatorcontrib><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Liu, Junjun</creatorcontrib><creatorcontrib>Fan, Fengtao</creatorcontrib><creatorcontrib>Xiao, Kai</creatorcontrib><title>Bio‐inspired Two‐dimensional Nanofluidic Ionic Transistor for Neuromorphic Signal Processing</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Voltage‐gated ion channels prevalent in neurons play important roles in generating action potential and information transmission by responding to transmembrane potential. Fabricating bio‐inspired ionic transistors with ions as charge carriers will be crucial for realizing neuro‐inspired devices and brain‐liking computing. Here, we reported a two‐dimensional nanofluidic ionic transistor based on a MXene membrane with sub‐1 nm interlayer channels. By applying a gating voltage on the MXene nanofluidic, a transmembrane potential will be generated to active the ionic transistor, which is similar to the transmembrane potential of neuron cells and can be effectively regulated by changing membrane parameters, e.g., thickness, composition, and interlayer spacing. For the symmetric MXene nanofluidic, a high on/off ratio of ~2000 can be achieved by forming an ionic depletion or accumulation zone, contingent on the sign of the gating potential. An asymmetric PET/MXene‐composited nanofluidic transitioned the ionic transistor from ambipolar to unipolar, resulting in a more sensitive gate voltage characteristic with a low subthreshold swing of 560 mV/decade. Furthermore, ionic logic gate circuits, including the “NOT”, “NAND”, and “NOR” gate, were implemented for neuromorphic signal processing successfully, which provides a promising pathway towards highly parallel, low energy consumption, and ion‐based brain‐like computing.
Inspired by voltage‐gated ion channels in neurons, a two‐dimensional nanofluidic ionic transistor was fabricated, which operates based on the response to transmembrane potential. The device demonstrates a high on/off ratio of ~2000 and can transition from ambipolar to unipolar behavior with a low subthreshold swing of 560 mV/decade. The successful implementation of ionic logic gate circuits, including “NOT”, “NAND”, and “NOR” gates, paves a promising pathway towards ion‐based brain‐like computing.</description><subject>Action potential</subject><subject>Action Potentials</subject><subject>Brain</subject><subject>Channel gating</subject><subject>Current carriers</subject><subject>Electric potential</subject><subject>Energy consumption</subject><subject>Fluidics</subject><subject>Gates (circuits)</subject><subject>Information processing</subject><subject>Interlayers</subject><subject>Ion channels</subject><subject>Ionic circuit</subject><subject>Ionic transistors</subject><subject>Ions</subject><subject>Logic circuits</subject><subject>Membrane potential</subject><subject>Membrane Potentials</subject><subject>Membranes</subject><subject>MXene</subject><subject>MXenes</subject><subject>Nanofluidic</subject><subject>Nanofluids</subject><subject>Nitrites</subject><subject>Signal processing</subject><subject>Transistors</subject><subject>Transition Elements</subject><subject>Two-dimensional materials</subject><subject>Voltage</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1OAyEUhYnR-L91aZq4cTMV5g4DLLXxp0lTTaxrBIZRzMxQwYlx5yP4jD6JNK2auHEBXHK-c3JzEDogeEgwzk9U5-wwx3mBScHYGtomNCcZMAbraS4AMsYp2UI7MT4lnnNcbqIt4AURRSm20f2Z85_vH66LcxdsNZi9Lr6Va20Xne9UM5iqztdN7ypnBmPfpXsWVBLjiw-DOp2p7YNvfZg_Ju3WPSxMN8EbG6PrHvbQRq2aaPdX7y66uzifja6yyfXleHQ6yQwwYFlBuMDacF1pUJwqykFDoagg2gpMGRVgaGVsxUpVayZwKSoMtOaYam2NgV10vMydB__c2_giWxeNbRrVWd9HmQuAoiTJmdCjP-iT70NaO0rAwAFzjHmihkvKBB9jsLWcB9eq8CYJlovu5aJ7-dN9MhyuYnvd2uoH_y47AWIJvLrGvv0TJ0-n4_Pf8C-YgpMo</recordid><startdate>20240422</startdate><enddate>20240422</enddate><creator>Mei, Tingting</creator><creator>Liu, Wenchao</creator><creator>Sun, Fusai</creator><creator>Chen, Yuanxia</creator><creator>Xu, Guoheng</creator><creator>Huang, Zijia</creator><creator>Jiang, Yisha</creator><creator>Wang, Senyao</creator><creator>Chen, Lu</creator><creator>Liu, Junjun</creator><creator>Fan, Fengtao</creator><creator>Xiao, Kai</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9829-2707</orcidid></search><sort><creationdate>20240422</creationdate><title>Bio‐inspired Two‐dimensional Nanofluidic Ionic Transistor for Neuromorphic Signal Processing</title><author>Mei, Tingting ; Liu, Wenchao ; Sun, Fusai ; Chen, Yuanxia ; Xu, Guoheng ; Huang, Zijia ; Jiang, Yisha ; Wang, Senyao ; Chen, Lu ; Liu, Junjun ; Fan, Fengtao ; Xiao, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3737-41890bc8bdb3a85a583b34a591be9057593c5dced76afb79069d035f805bbecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Action potential</topic><topic>Action Potentials</topic><topic>Brain</topic><topic>Channel gating</topic><topic>Current carriers</topic><topic>Electric potential</topic><topic>Energy consumption</topic><topic>Fluidics</topic><topic>Gates (circuits)</topic><topic>Information processing</topic><topic>Interlayers</topic><topic>Ion channels</topic><topic>Ionic circuit</topic><topic>Ionic transistors</topic><topic>Ions</topic><topic>Logic circuits</topic><topic>Membrane potential</topic><topic>Membrane Potentials</topic><topic>Membranes</topic><topic>MXene</topic><topic>MXenes</topic><topic>Nanofluidic</topic><topic>Nanofluids</topic><topic>Nitrites</topic><topic>Signal processing</topic><topic>Transistors</topic><topic>Transition Elements</topic><topic>Two-dimensional materials</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Tingting</creatorcontrib><creatorcontrib>Liu, Wenchao</creatorcontrib><creatorcontrib>Sun, Fusai</creatorcontrib><creatorcontrib>Chen, Yuanxia</creatorcontrib><creatorcontrib>Xu, Guoheng</creatorcontrib><creatorcontrib>Huang, Zijia</creatorcontrib><creatorcontrib>Jiang, Yisha</creatorcontrib><creatorcontrib>Wang, Senyao</creatorcontrib><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Liu, Junjun</creatorcontrib><creatorcontrib>Fan, Fengtao</creatorcontrib><creatorcontrib>Xiao, Kai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Tingting</au><au>Liu, Wenchao</au><au>Sun, Fusai</au><au>Chen, Yuanxia</au><au>Xu, Guoheng</au><au>Huang, Zijia</au><au>Jiang, Yisha</au><au>Wang, Senyao</au><au>Chen, Lu</au><au>Liu, Junjun</au><au>Fan, Fengtao</au><au>Xiao, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio‐inspired Two‐dimensional Nanofluidic Ionic Transistor for Neuromorphic Signal Processing</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-04-22</date><risdate>2024</risdate><volume>63</volume><issue>17</issue><spage>e202401477</spage><epage>n/a</epage><pages>e202401477-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Voltage‐gated ion channels prevalent in neurons play important roles in generating action potential and information transmission by responding to transmembrane potential. Fabricating bio‐inspired ionic transistors with ions as charge carriers will be crucial for realizing neuro‐inspired devices and brain‐liking computing. Here, we reported a two‐dimensional nanofluidic ionic transistor based on a MXene membrane with sub‐1 nm interlayer channels. By applying a gating voltage on the MXene nanofluidic, a transmembrane potential will be generated to active the ionic transistor, which is similar to the transmembrane potential of neuron cells and can be effectively regulated by changing membrane parameters, e.g., thickness, composition, and interlayer spacing. For the symmetric MXene nanofluidic, a high on/off ratio of ~2000 can be achieved by forming an ionic depletion or accumulation zone, contingent on the sign of the gating potential. An asymmetric PET/MXene‐composited nanofluidic transitioned the ionic transistor from ambipolar to unipolar, resulting in a more sensitive gate voltage characteristic with a low subthreshold swing of 560 mV/decade. Furthermore, ionic logic gate circuits, including the “NOT”, “NAND”, and “NOR” gate, were implemented for neuromorphic signal processing successfully, which provides a promising pathway towards highly parallel, low energy consumption, and ion‐based brain‐like computing.
Inspired by voltage‐gated ion channels in neurons, a two‐dimensional nanofluidic ionic transistor was fabricated, which operates based on the response to transmembrane potential. The device demonstrates a high on/off ratio of ~2000 and can transition from ambipolar to unipolar behavior with a low subthreshold swing of 560 mV/decade. The successful implementation of ionic logic gate circuits, including “NOT”, “NAND”, and “NOR” gates, paves a promising pathway towards ion‐based brain‐like computing.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38419469</pmid><doi>10.1002/anie.202401477</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-9829-2707</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2024-04, Vol.63 (17), p.e202401477-n/a |
issn | 1433-7851 1521-3773 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_2933461790 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Action potential Action Potentials Brain Channel gating Current carriers Electric potential Energy consumption Fluidics Gates (circuits) Information processing Interlayers Ion channels Ionic circuit Ionic transistors Ions Logic circuits Membrane potential Membrane Potentials Membranes MXene MXenes Nanofluidic Nanofluids Nitrites Signal processing Transistors Transition Elements Two-dimensional materials Voltage |
title | Bio‐inspired Two‐dimensional Nanofluidic Ionic Transistor for Neuromorphic Signal Processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T22%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio%E2%80%90inspired%20Two%E2%80%90dimensional%20Nanofluidic%20Ionic%20Transistor%20for%20Neuromorphic%20Signal%20Processing&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Mei,%20Tingting&rft.date=2024-04-22&rft.volume=63&rft.issue=17&rft.spage=e202401477&rft.epage=n/a&rft.pages=e202401477-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202401477&rft_dat=%3Cproquest_cross%3E2933461790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038308008&rft_id=info:pmid/38419469&rfr_iscdi=true |