Bio‐inspired Two‐dimensional Nanofluidic Ionic Transistor for Neuromorphic Signal Processing

Voltage‐gated ion channels prevalent in neurons play important roles in generating action potential and information transmission by responding to transmembrane potential. Fabricating bio‐inspired ionic transistors with ions as charge carriers will be crucial for realizing neuro‐inspired devices and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-04, Vol.63 (17), p.e202401477-n/a
Hauptverfasser: Mei, Tingting, Liu, Wenchao, Sun, Fusai, Chen, Yuanxia, Xu, Guoheng, Huang, Zijia, Jiang, Yisha, Wang, Senyao, Chen, Lu, Liu, Junjun, Fan, Fengtao, Xiao, Kai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 17
container_start_page e202401477
container_title Angewandte Chemie International Edition
container_volume 63
creator Mei, Tingting
Liu, Wenchao
Sun, Fusai
Chen, Yuanxia
Xu, Guoheng
Huang, Zijia
Jiang, Yisha
Wang, Senyao
Chen, Lu
Liu, Junjun
Fan, Fengtao
Xiao, Kai
description Voltage‐gated ion channels prevalent in neurons play important roles in generating action potential and information transmission by responding to transmembrane potential. Fabricating bio‐inspired ionic transistors with ions as charge carriers will be crucial for realizing neuro‐inspired devices and brain‐liking computing. Here, we reported a two‐dimensional nanofluidic ionic transistor based on a MXene membrane with sub‐1 nm interlayer channels. By applying a gating voltage on the MXene nanofluidic, a transmembrane potential will be generated to active the ionic transistor, which is similar to the transmembrane potential of neuron cells and can be effectively regulated by changing membrane parameters, e.g., thickness, composition, and interlayer spacing. For the symmetric MXene nanofluidic, a high on/off ratio of ~2000 can be achieved by forming an ionic depletion or accumulation zone, contingent on the sign of the gating potential. An asymmetric PET/MXene‐composited nanofluidic transitioned the ionic transistor from ambipolar to unipolar, resulting in a more sensitive gate voltage characteristic with a low subthreshold swing of 560 mV/decade. Furthermore, ionic logic gate circuits, including the “NOT”, “NAND”, and “NOR” gate, were implemented for neuromorphic signal processing successfully, which provides a promising pathway towards highly parallel, low energy consumption, and ion‐based brain‐like computing. Inspired by voltage‐gated ion channels in neurons, a two‐dimensional nanofluidic ionic transistor was fabricated, which operates based on the response to transmembrane potential. The device demonstrates a high on/off ratio of ~2000 and can transition from ambipolar to unipolar behavior with a low subthreshold swing of 560 mV/decade. The successful implementation of ionic logic gate circuits, including “NOT”, “NAND”, and “NOR” gates, paves a promising pathway towards ion‐based brain‐like computing.
doi_str_mv 10.1002/anie.202401477
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2933461790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933461790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3737-41890bc8bdb3a85a583b34a591be9057593c5dced76afb79069d035f805bbecc3</originalsourceid><addsrcrecordid>eNqFkM1OAyEUhYnR-L91aZq4cTMV5g4DLLXxp0lTTaxrBIZRzMxQwYlx5yP4jD6JNK2auHEBXHK-c3JzEDogeEgwzk9U5-wwx3mBScHYGtomNCcZMAbraS4AMsYp2UI7MT4lnnNcbqIt4AURRSm20f2Z85_vH66LcxdsNZi9Lr6Va20Xne9UM5iqztdN7ypnBmPfpXsWVBLjiw-DOp2p7YNvfZg_Ju3WPSxMN8EbG6PrHvbQRq2aaPdX7y66uzifja6yyfXleHQ6yQwwYFlBuMDacF1pUJwqykFDoagg2gpMGRVgaGVsxUpVayZwKSoMtOaYam2NgV10vMydB__c2_giWxeNbRrVWd9HmQuAoiTJmdCjP-iT70NaO0rAwAFzjHmihkvKBB9jsLWcB9eq8CYJlovu5aJ7-dN9MhyuYnvd2uoH_y47AWIJvLrGvv0TJ0-n4_Pf8C-YgpMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3038308008</pqid></control><display><type>article</type><title>Bio‐inspired Two‐dimensional Nanofluidic Ionic Transistor for Neuromorphic Signal Processing</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Mei, Tingting ; Liu, Wenchao ; Sun, Fusai ; Chen, Yuanxia ; Xu, Guoheng ; Huang, Zijia ; Jiang, Yisha ; Wang, Senyao ; Chen, Lu ; Liu, Junjun ; Fan, Fengtao ; Xiao, Kai</creator><creatorcontrib>Mei, Tingting ; Liu, Wenchao ; Sun, Fusai ; Chen, Yuanxia ; Xu, Guoheng ; Huang, Zijia ; Jiang, Yisha ; Wang, Senyao ; Chen, Lu ; Liu, Junjun ; Fan, Fengtao ; Xiao, Kai</creatorcontrib><description>Voltage‐gated ion channels prevalent in neurons play important roles in generating action potential and information transmission by responding to transmembrane potential. Fabricating bio‐inspired ionic transistors with ions as charge carriers will be crucial for realizing neuro‐inspired devices and brain‐liking computing. Here, we reported a two‐dimensional nanofluidic ionic transistor based on a MXene membrane with sub‐1 nm interlayer channels. By applying a gating voltage on the MXene nanofluidic, a transmembrane potential will be generated to active the ionic transistor, which is similar to the transmembrane potential of neuron cells and can be effectively regulated by changing membrane parameters, e.g., thickness, composition, and interlayer spacing. For the symmetric MXene nanofluidic, a high on/off ratio of ~2000 can be achieved by forming an ionic depletion or accumulation zone, contingent on the sign of the gating potential. An asymmetric PET/MXene‐composited nanofluidic transitioned the ionic transistor from ambipolar to unipolar, resulting in a more sensitive gate voltage characteristic with a low subthreshold swing of 560 mV/decade. Furthermore, ionic logic gate circuits, including the “NOT”, “NAND”, and “NOR” gate, were implemented for neuromorphic signal processing successfully, which provides a promising pathway towards highly parallel, low energy consumption, and ion‐based brain‐like computing. Inspired by voltage‐gated ion channels in neurons, a two‐dimensional nanofluidic ionic transistor was fabricated, which operates based on the response to transmembrane potential. The device demonstrates a high on/off ratio of ~2000 and can transition from ambipolar to unipolar behavior with a low subthreshold swing of 560 mV/decade. The successful implementation of ionic logic gate circuits, including “NOT”, “NAND”, and “NOR” gates, paves a promising pathway towards ion‐based brain‐like computing.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202401477</identifier><identifier>PMID: 38419469</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Action potential ; Action Potentials ; Brain ; Channel gating ; Current carriers ; Electric potential ; Energy consumption ; Fluidics ; Gates (circuits) ; Information processing ; Interlayers ; Ion channels ; Ionic circuit ; Ionic transistors ; Ions ; Logic circuits ; Membrane potential ; Membrane Potentials ; Membranes ; MXene ; MXenes ; Nanofluidic ; Nanofluids ; Nitrites ; Signal processing ; Transistors ; Transition Elements ; Two-dimensional materials ; Voltage</subject><ispartof>Angewandte Chemie International Edition, 2024-04, Vol.63 (17), p.e202401477-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3737-41890bc8bdb3a85a583b34a591be9057593c5dced76afb79069d035f805bbecc3</citedby><cites>FETCH-LOGICAL-c3737-41890bc8bdb3a85a583b34a591be9057593c5dced76afb79069d035f805bbecc3</cites><orcidid>0000-0001-9829-2707</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202401477$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202401477$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38419469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mei, Tingting</creatorcontrib><creatorcontrib>Liu, Wenchao</creatorcontrib><creatorcontrib>Sun, Fusai</creatorcontrib><creatorcontrib>Chen, Yuanxia</creatorcontrib><creatorcontrib>Xu, Guoheng</creatorcontrib><creatorcontrib>Huang, Zijia</creatorcontrib><creatorcontrib>Jiang, Yisha</creatorcontrib><creatorcontrib>Wang, Senyao</creatorcontrib><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Liu, Junjun</creatorcontrib><creatorcontrib>Fan, Fengtao</creatorcontrib><creatorcontrib>Xiao, Kai</creatorcontrib><title>Bio‐inspired Two‐dimensional Nanofluidic Ionic Transistor for Neuromorphic Signal Processing</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Voltage‐gated ion channels prevalent in neurons play important roles in generating action potential and information transmission by responding to transmembrane potential. Fabricating bio‐inspired ionic transistors with ions as charge carriers will be crucial for realizing neuro‐inspired devices and brain‐liking computing. Here, we reported a two‐dimensional nanofluidic ionic transistor based on a MXene membrane with sub‐1 nm interlayer channels. By applying a gating voltage on the MXene nanofluidic, a transmembrane potential will be generated to active the ionic transistor, which is similar to the transmembrane potential of neuron cells and can be effectively regulated by changing membrane parameters, e.g., thickness, composition, and interlayer spacing. For the symmetric MXene nanofluidic, a high on/off ratio of ~2000 can be achieved by forming an ionic depletion or accumulation zone, contingent on the sign of the gating potential. An asymmetric PET/MXene‐composited nanofluidic transitioned the ionic transistor from ambipolar to unipolar, resulting in a more sensitive gate voltage characteristic with a low subthreshold swing of 560 mV/decade. Furthermore, ionic logic gate circuits, including the “NOT”, “NAND”, and “NOR” gate, were implemented for neuromorphic signal processing successfully, which provides a promising pathway towards highly parallel, low energy consumption, and ion‐based brain‐like computing. Inspired by voltage‐gated ion channels in neurons, a two‐dimensional nanofluidic ionic transistor was fabricated, which operates based on the response to transmembrane potential. The device demonstrates a high on/off ratio of ~2000 and can transition from ambipolar to unipolar behavior with a low subthreshold swing of 560 mV/decade. The successful implementation of ionic logic gate circuits, including “NOT”, “NAND”, and “NOR” gates, paves a promising pathway towards ion‐based brain‐like computing.</description><subject>Action potential</subject><subject>Action Potentials</subject><subject>Brain</subject><subject>Channel gating</subject><subject>Current carriers</subject><subject>Electric potential</subject><subject>Energy consumption</subject><subject>Fluidics</subject><subject>Gates (circuits)</subject><subject>Information processing</subject><subject>Interlayers</subject><subject>Ion channels</subject><subject>Ionic circuit</subject><subject>Ionic transistors</subject><subject>Ions</subject><subject>Logic circuits</subject><subject>Membrane potential</subject><subject>Membrane Potentials</subject><subject>Membranes</subject><subject>MXene</subject><subject>MXenes</subject><subject>Nanofluidic</subject><subject>Nanofluids</subject><subject>Nitrites</subject><subject>Signal processing</subject><subject>Transistors</subject><subject>Transition Elements</subject><subject>Two-dimensional materials</subject><subject>Voltage</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkM1OAyEUhYnR-L91aZq4cTMV5g4DLLXxp0lTTaxrBIZRzMxQwYlx5yP4jD6JNK2auHEBXHK-c3JzEDogeEgwzk9U5-wwx3mBScHYGtomNCcZMAbraS4AMsYp2UI7MT4lnnNcbqIt4AURRSm20f2Z85_vH66LcxdsNZi9Lr6Va20Xne9UM5iqztdN7ypnBmPfpXsWVBLjiw-DOp2p7YNvfZg_Ju3WPSxMN8EbG6PrHvbQRq2aaPdX7y66uzifja6yyfXleHQ6yQwwYFlBuMDacF1pUJwqykFDoagg2gpMGRVgaGVsxUpVayZwKSoMtOaYam2NgV10vMydB__c2_giWxeNbRrVWd9HmQuAoiTJmdCjP-iT70NaO0rAwAFzjHmihkvKBB9jsLWcB9eq8CYJlovu5aJ7-dN9MhyuYnvd2uoH_y47AWIJvLrGvv0TJ0-n4_Pf8C-YgpMo</recordid><startdate>20240422</startdate><enddate>20240422</enddate><creator>Mei, Tingting</creator><creator>Liu, Wenchao</creator><creator>Sun, Fusai</creator><creator>Chen, Yuanxia</creator><creator>Xu, Guoheng</creator><creator>Huang, Zijia</creator><creator>Jiang, Yisha</creator><creator>Wang, Senyao</creator><creator>Chen, Lu</creator><creator>Liu, Junjun</creator><creator>Fan, Fengtao</creator><creator>Xiao, Kai</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9829-2707</orcidid></search><sort><creationdate>20240422</creationdate><title>Bio‐inspired Two‐dimensional Nanofluidic Ionic Transistor for Neuromorphic Signal Processing</title><author>Mei, Tingting ; Liu, Wenchao ; Sun, Fusai ; Chen, Yuanxia ; Xu, Guoheng ; Huang, Zijia ; Jiang, Yisha ; Wang, Senyao ; Chen, Lu ; Liu, Junjun ; Fan, Fengtao ; Xiao, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3737-41890bc8bdb3a85a583b34a591be9057593c5dced76afb79069d035f805bbecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Action potential</topic><topic>Action Potentials</topic><topic>Brain</topic><topic>Channel gating</topic><topic>Current carriers</topic><topic>Electric potential</topic><topic>Energy consumption</topic><topic>Fluidics</topic><topic>Gates (circuits)</topic><topic>Information processing</topic><topic>Interlayers</topic><topic>Ion channels</topic><topic>Ionic circuit</topic><topic>Ionic transistors</topic><topic>Ions</topic><topic>Logic circuits</topic><topic>Membrane potential</topic><topic>Membrane Potentials</topic><topic>Membranes</topic><topic>MXene</topic><topic>MXenes</topic><topic>Nanofluidic</topic><topic>Nanofluids</topic><topic>Nitrites</topic><topic>Signal processing</topic><topic>Transistors</topic><topic>Transition Elements</topic><topic>Two-dimensional materials</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mei, Tingting</creatorcontrib><creatorcontrib>Liu, Wenchao</creatorcontrib><creatorcontrib>Sun, Fusai</creatorcontrib><creatorcontrib>Chen, Yuanxia</creatorcontrib><creatorcontrib>Xu, Guoheng</creatorcontrib><creatorcontrib>Huang, Zijia</creatorcontrib><creatorcontrib>Jiang, Yisha</creatorcontrib><creatorcontrib>Wang, Senyao</creatorcontrib><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Liu, Junjun</creatorcontrib><creatorcontrib>Fan, Fengtao</creatorcontrib><creatorcontrib>Xiao, Kai</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mei, Tingting</au><au>Liu, Wenchao</au><au>Sun, Fusai</au><au>Chen, Yuanxia</au><au>Xu, Guoheng</au><au>Huang, Zijia</au><au>Jiang, Yisha</au><au>Wang, Senyao</au><au>Chen, Lu</au><au>Liu, Junjun</au><au>Fan, Fengtao</au><au>Xiao, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio‐inspired Two‐dimensional Nanofluidic Ionic Transistor for Neuromorphic Signal Processing</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-04-22</date><risdate>2024</risdate><volume>63</volume><issue>17</issue><spage>e202401477</spage><epage>n/a</epage><pages>e202401477-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Voltage‐gated ion channels prevalent in neurons play important roles in generating action potential and information transmission by responding to transmembrane potential. Fabricating bio‐inspired ionic transistors with ions as charge carriers will be crucial for realizing neuro‐inspired devices and brain‐liking computing. Here, we reported a two‐dimensional nanofluidic ionic transistor based on a MXene membrane with sub‐1 nm interlayer channels. By applying a gating voltage on the MXene nanofluidic, a transmembrane potential will be generated to active the ionic transistor, which is similar to the transmembrane potential of neuron cells and can be effectively regulated by changing membrane parameters, e.g., thickness, composition, and interlayer spacing. For the symmetric MXene nanofluidic, a high on/off ratio of ~2000 can be achieved by forming an ionic depletion or accumulation zone, contingent on the sign of the gating potential. An asymmetric PET/MXene‐composited nanofluidic transitioned the ionic transistor from ambipolar to unipolar, resulting in a more sensitive gate voltage characteristic with a low subthreshold swing of 560 mV/decade. Furthermore, ionic logic gate circuits, including the “NOT”, “NAND”, and “NOR” gate, were implemented for neuromorphic signal processing successfully, which provides a promising pathway towards highly parallel, low energy consumption, and ion‐based brain‐like computing. Inspired by voltage‐gated ion channels in neurons, a two‐dimensional nanofluidic ionic transistor was fabricated, which operates based on the response to transmembrane potential. The device demonstrates a high on/off ratio of ~2000 and can transition from ambipolar to unipolar behavior with a low subthreshold swing of 560 mV/decade. The successful implementation of ionic logic gate circuits, including “NOT”, “NAND”, and “NOR” gates, paves a promising pathway towards ion‐based brain‐like computing.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38419469</pmid><doi>10.1002/anie.202401477</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-9829-2707</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-04, Vol.63 (17), p.e202401477-n/a
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2933461790
source MEDLINE; Access via Wiley Online Library
subjects Action potential
Action Potentials
Brain
Channel gating
Current carriers
Electric potential
Energy consumption
Fluidics
Gates (circuits)
Information processing
Interlayers
Ion channels
Ionic circuit
Ionic transistors
Ions
Logic circuits
Membrane potential
Membrane Potentials
Membranes
MXene
MXenes
Nanofluidic
Nanofluids
Nitrites
Signal processing
Transistors
Transition Elements
Two-dimensional materials
Voltage
title Bio‐inspired Two‐dimensional Nanofluidic Ionic Transistor for Neuromorphic Signal Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T22%3A31%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio%E2%80%90inspired%20Two%E2%80%90dimensional%20Nanofluidic%20Ionic%20Transistor%20for%20Neuromorphic%20Signal%20Processing&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Mei,%20Tingting&rft.date=2024-04-22&rft.volume=63&rft.issue=17&rft.spage=e202401477&rft.epage=n/a&rft.pages=e202401477-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202401477&rft_dat=%3Cproquest_cross%3E2933461790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3038308008&rft_id=info:pmid/38419469&rfr_iscdi=true