Revealing Seed‐Mediated Structural Evolution of Copper‐Silicide Nanostructures: Generating Structured Current Collectors for Rechargeable Batteries

Metal silicide thin films and nanostructures typically employed in electronics have recently gained significant attention in battery technology, where they are used as active or inactive materials. However, unlike thin films, the science behind the evolution of silicide nanostructures, especially 1D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-06, Vol.36 (23), p.e2310823-n/a
Hauptverfasser: Sankaran, Abinaya, Kapuria, Nilotpal, Beloshapkin, Sergey, Ahad, Syed Abdul, Singh, Shalini, Geaney, Hugh, Ryan, Kevin M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page e2310823
container_title Advanced materials (Weinheim)
container_volume 36
creator Sankaran, Abinaya
Kapuria, Nilotpal
Beloshapkin, Sergey
Ahad, Syed Abdul
Singh, Shalini
Geaney, Hugh
Ryan, Kevin M
description Metal silicide thin films and nanostructures typically employed in electronics have recently gained significant attention in battery technology, where they are used as active or inactive materials. However, unlike thin films, the science behind the evolution of silicide nanostructures, especially 1D nanowires (NWs), is a key missing aspect. CuxSiy nanostructures synthesized by solvent vapor growth technique are studied as a model system to gain insights into metal silicide formation. The temperature‐dependent phase evolution of CuxSiy structures proceeds from Cu>Cu0.83Si0.17>Cu5Si>Cu15Si4. The role of Cu diffusion kinetics on the morphological progression of Cu silicides is studied, revealing that the growth of 1D metal silicide NWs proceeds through an in situ formed, Cu seed‐mediated, self‐catalytic process. The different CuxSiy morphologies synthesized are utilized as structured current collectors for K‐ion battery anodes. Sb deposited by thermal evaporation upon Cu15Si4 tripod NWs and cube architectures exhibit reversible alloying capacities of 477.3 and 477.6 mAh g−1 at a C/5 rate. Furthermore, Sb deposited Cu15Si4 tripod NWs anode tested in Li‐ion and Na‐ion batteries demonstrate reversible capacities of ≈518 and 495 mAh g−1. The growth mechanism behind the evolution of silicide nanostructures directly on Cu foil is elucidated, where the temperature‐dependent phase evolution of CuxSiy proceeds from Cu>Cu0.83Si0.17>Cu5Si>Cu15Si4. The Cu diffusion kinetics guide the morphological progression of silicides, revealing that the growth of 1D metal silicide nanowires proceeds through an in situ formed, Cu seed‐mediated, self‐catalytic process.
doi_str_mv 10.1002/adma.202310823
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2933461315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3065128750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-3c224aa545d420cf8e8df988140647eb5bab4dcc5930cd90f344fab44ac153ef3</originalsourceid><addsrcrecordid>eNqFkc1uEzEUhS0EoiGwZYkssWEzwb-TMbsQSkFqQWpgbXns6-LKGQfbU9Qdj8CO9-NJmJK0SGxYXenoO5-udBB6SsmCEsJeGrc1C0YYp6Rj_B6aUcloI4iS99GMKC4b1YruCD0q5ZIQolrSPkRHvBOMMqpm6Oc5XIGJYbjAGwD36_uPM3DBVHB4U_No65hNxMdXKY41pAEnj9dpt4M8kZsQgw0O8AczpHKgobzCJzBANvWP9DZ2eD3mDEOd-jGCrSkX7FPG52C_mHwBpo-AX5taIQcoj9EDb2KBJ4c7R5_fHn9av2tOP568X69OG8uXnDfcMiaMkUI6wYj1HXTOq66jgrRiCb3sTS-ctVJxYp0ingvhp0gYSyUHz-foxd67y-nrCKXqbSgWYjQDpLFopjgXLeUTPUfP_0Ev05iH6TvNSSsp65aSTNRiT9mcSsng9S6HrcnXmhJ9M5m-mUzfTTYVnh20Y78Fd4ffbjQBag98CxGu_6PTqzdnq7_y32_Rp8E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3065128750</pqid></control><display><type>article</type><title>Revealing Seed‐Mediated Structural Evolution of Copper‐Silicide Nanostructures: Generating Structured Current Collectors for Rechargeable Batteries</title><source>Access via Wiley Online Library</source><creator>Sankaran, Abinaya ; Kapuria, Nilotpal ; Beloshapkin, Sergey ; Ahad, Syed Abdul ; Singh, Shalini ; Geaney, Hugh ; Ryan, Kevin M</creator><creatorcontrib>Sankaran, Abinaya ; Kapuria, Nilotpal ; Beloshapkin, Sergey ; Ahad, Syed Abdul ; Singh, Shalini ; Geaney, Hugh ; Ryan, Kevin M</creatorcontrib><description>Metal silicide thin films and nanostructures typically employed in electronics have recently gained significant attention in battery technology, where they are used as active or inactive materials. However, unlike thin films, the science behind the evolution of silicide nanostructures, especially 1D nanowires (NWs), is a key missing aspect. CuxSiy nanostructures synthesized by solvent vapor growth technique are studied as a model system to gain insights into metal silicide formation. The temperature‐dependent phase evolution of CuxSiy structures proceeds from Cu&gt;Cu0.83Si0.17&gt;Cu5Si&gt;Cu15Si4. The role of Cu diffusion kinetics on the morphological progression of Cu silicides is studied, revealing that the growth of 1D metal silicide NWs proceeds through an in situ formed, Cu seed‐mediated, self‐catalytic process. The different CuxSiy morphologies synthesized are utilized as structured current collectors for K‐ion battery anodes. Sb deposited by thermal evaporation upon Cu15Si4 tripod NWs and cube architectures exhibit reversible alloying capacities of 477.3 and 477.6 mAh g−1 at a C/5 rate. Furthermore, Sb deposited Cu15Si4 tripod NWs anode tested in Li‐ion and Na‐ion batteries demonstrate reversible capacities of ≈518 and 495 mAh g−1. The growth mechanism behind the evolution of silicide nanostructures directly on Cu foil is elucidated, where the temperature‐dependent phase evolution of CuxSiy proceeds from Cu&gt;Cu0.83Si0.17&gt;Cu5Si&gt;Cu15Si4. The Cu diffusion kinetics guide the morphological progression of silicides, revealing that the growth of 1D metal silicide nanowires proceeds through an in situ formed, Cu seed‐mediated, self‐catalytic process.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202310823</identifier><identifier>PMID: 38421219</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Batteries ; Collectors ; Copper ; Evolution ; Intermetallic compounds ; metal silicide ; Metal silicides ; Morphology ; Nanostructure ; nanowire ; Nanowires ; potassium ion battery ; Rechargeable batteries ; seed‐mediated growth ; Silicides ; Sodium-ion batteries ; Temperature dependence ; Thin films</subject><ispartof>Advanced materials (Weinheim), 2024-06, Vol.36 (23), p.e2310823-n/a</ispartof><rights>2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>This article is protected by copyright. All rights reserved.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-3c224aa545d420cf8e8df988140647eb5bab4dcc5930cd90f344fab44ac153ef3</citedby><cites>FETCH-LOGICAL-c3733-3c224aa545d420cf8e8df988140647eb5bab4dcc5930cd90f344fab44ac153ef3</cites><orcidid>0000-0002-8651-7304 ; 0000-0003-3670-8505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202310823$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202310823$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38421219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sankaran, Abinaya</creatorcontrib><creatorcontrib>Kapuria, Nilotpal</creatorcontrib><creatorcontrib>Beloshapkin, Sergey</creatorcontrib><creatorcontrib>Ahad, Syed Abdul</creatorcontrib><creatorcontrib>Singh, Shalini</creatorcontrib><creatorcontrib>Geaney, Hugh</creatorcontrib><creatorcontrib>Ryan, Kevin M</creatorcontrib><title>Revealing Seed‐Mediated Structural Evolution of Copper‐Silicide Nanostructures: Generating Structured Current Collectors for Rechargeable Batteries</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Metal silicide thin films and nanostructures typically employed in electronics have recently gained significant attention in battery technology, where they are used as active or inactive materials. However, unlike thin films, the science behind the evolution of silicide nanostructures, especially 1D nanowires (NWs), is a key missing aspect. CuxSiy nanostructures synthesized by solvent vapor growth technique are studied as a model system to gain insights into metal silicide formation. The temperature‐dependent phase evolution of CuxSiy structures proceeds from Cu&gt;Cu0.83Si0.17&gt;Cu5Si&gt;Cu15Si4. The role of Cu diffusion kinetics on the morphological progression of Cu silicides is studied, revealing that the growth of 1D metal silicide NWs proceeds through an in situ formed, Cu seed‐mediated, self‐catalytic process. The different CuxSiy morphologies synthesized are utilized as structured current collectors for K‐ion battery anodes. Sb deposited by thermal evaporation upon Cu15Si4 tripod NWs and cube architectures exhibit reversible alloying capacities of 477.3 and 477.6 mAh g−1 at a C/5 rate. Furthermore, Sb deposited Cu15Si4 tripod NWs anode tested in Li‐ion and Na‐ion batteries demonstrate reversible capacities of ≈518 and 495 mAh g−1. The growth mechanism behind the evolution of silicide nanostructures directly on Cu foil is elucidated, where the temperature‐dependent phase evolution of CuxSiy proceeds from Cu&gt;Cu0.83Si0.17&gt;Cu5Si&gt;Cu15Si4. The Cu diffusion kinetics guide the morphological progression of silicides, revealing that the growth of 1D metal silicide nanowires proceeds through an in situ formed, Cu seed‐mediated, self‐catalytic process.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Collectors</subject><subject>Copper</subject><subject>Evolution</subject><subject>Intermetallic compounds</subject><subject>metal silicide</subject><subject>Metal silicides</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>nanowire</subject><subject>Nanowires</subject><subject>potassium ion battery</subject><subject>Rechargeable batteries</subject><subject>seed‐mediated growth</subject><subject>Silicides</subject><subject>Sodium-ion batteries</subject><subject>Temperature dependence</subject><subject>Thin films</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkc1uEzEUhS0EoiGwZYkssWEzwb-TMbsQSkFqQWpgbXns6-LKGQfbU9Qdj8CO9-NJmJK0SGxYXenoO5-udBB6SsmCEsJeGrc1C0YYp6Rj_B6aUcloI4iS99GMKC4b1YruCD0q5ZIQolrSPkRHvBOMMqpm6Oc5XIGJYbjAGwD36_uPM3DBVHB4U_No65hNxMdXKY41pAEnj9dpt4M8kZsQgw0O8AczpHKgobzCJzBANvWP9DZ2eD3mDEOd-jGCrSkX7FPG52C_mHwBpo-AX5taIQcoj9EDb2KBJ4c7R5_fHn9av2tOP568X69OG8uXnDfcMiaMkUI6wYj1HXTOq66jgrRiCb3sTS-ctVJxYp0ingvhp0gYSyUHz-foxd67y-nrCKXqbSgWYjQDpLFopjgXLeUTPUfP_0Ev05iH6TvNSSsp65aSTNRiT9mcSsng9S6HrcnXmhJ9M5m-mUzfTTYVnh20Y78Fd4ffbjQBag98CxGu_6PTqzdnq7_y32_Rp8E</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Sankaran, Abinaya</creator><creator>Kapuria, Nilotpal</creator><creator>Beloshapkin, Sergey</creator><creator>Ahad, Syed Abdul</creator><creator>Singh, Shalini</creator><creator>Geaney, Hugh</creator><creator>Ryan, Kevin M</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8651-7304</orcidid><orcidid>https://orcid.org/0000-0003-3670-8505</orcidid></search><sort><creationdate>20240601</creationdate><title>Revealing Seed‐Mediated Structural Evolution of Copper‐Silicide Nanostructures: Generating Structured Current Collectors for Rechargeable Batteries</title><author>Sankaran, Abinaya ; Kapuria, Nilotpal ; Beloshapkin, Sergey ; Ahad, Syed Abdul ; Singh, Shalini ; Geaney, Hugh ; Ryan, Kevin M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-3c224aa545d420cf8e8df988140647eb5bab4dcc5930cd90f344fab44ac153ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Collectors</topic><topic>Copper</topic><topic>Evolution</topic><topic>Intermetallic compounds</topic><topic>metal silicide</topic><topic>Metal silicides</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>nanowire</topic><topic>Nanowires</topic><topic>potassium ion battery</topic><topic>Rechargeable batteries</topic><topic>seed‐mediated growth</topic><topic>Silicides</topic><topic>Sodium-ion batteries</topic><topic>Temperature dependence</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sankaran, Abinaya</creatorcontrib><creatorcontrib>Kapuria, Nilotpal</creatorcontrib><creatorcontrib>Beloshapkin, Sergey</creatorcontrib><creatorcontrib>Ahad, Syed Abdul</creatorcontrib><creatorcontrib>Singh, Shalini</creatorcontrib><creatorcontrib>Geaney, Hugh</creatorcontrib><creatorcontrib>Ryan, Kevin M</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sankaran, Abinaya</au><au>Kapuria, Nilotpal</au><au>Beloshapkin, Sergey</au><au>Ahad, Syed Abdul</au><au>Singh, Shalini</au><au>Geaney, Hugh</au><au>Ryan, Kevin M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing Seed‐Mediated Structural Evolution of Copper‐Silicide Nanostructures: Generating Structured Current Collectors for Rechargeable Batteries</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>36</volume><issue>23</issue><spage>e2310823</spage><epage>n/a</epage><pages>e2310823-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Metal silicide thin films and nanostructures typically employed in electronics have recently gained significant attention in battery technology, where they are used as active or inactive materials. However, unlike thin films, the science behind the evolution of silicide nanostructures, especially 1D nanowires (NWs), is a key missing aspect. CuxSiy nanostructures synthesized by solvent vapor growth technique are studied as a model system to gain insights into metal silicide formation. The temperature‐dependent phase evolution of CuxSiy structures proceeds from Cu&gt;Cu0.83Si0.17&gt;Cu5Si&gt;Cu15Si4. The role of Cu diffusion kinetics on the morphological progression of Cu silicides is studied, revealing that the growth of 1D metal silicide NWs proceeds through an in situ formed, Cu seed‐mediated, self‐catalytic process. The different CuxSiy morphologies synthesized are utilized as structured current collectors for K‐ion battery anodes. Sb deposited by thermal evaporation upon Cu15Si4 tripod NWs and cube architectures exhibit reversible alloying capacities of 477.3 and 477.6 mAh g−1 at a C/5 rate. Furthermore, Sb deposited Cu15Si4 tripod NWs anode tested in Li‐ion and Na‐ion batteries demonstrate reversible capacities of ≈518 and 495 mAh g−1. The growth mechanism behind the evolution of silicide nanostructures directly on Cu foil is elucidated, where the temperature‐dependent phase evolution of CuxSiy proceeds from Cu&gt;Cu0.83Si0.17&gt;Cu5Si&gt;Cu15Si4. The Cu diffusion kinetics guide the morphological progression of silicides, revealing that the growth of 1D metal silicide nanowires proceeds through an in situ formed, Cu seed‐mediated, self‐catalytic process.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38421219</pmid><doi>10.1002/adma.202310823</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8651-7304</orcidid><orcidid>https://orcid.org/0000-0003-3670-8505</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-06, Vol.36 (23), p.e2310823-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2933461315
source Access via Wiley Online Library
subjects Anodes
Batteries
Collectors
Copper
Evolution
Intermetallic compounds
metal silicide
Metal silicides
Morphology
Nanostructure
nanowire
Nanowires
potassium ion battery
Rechargeable batteries
seed‐mediated growth
Silicides
Sodium-ion batteries
Temperature dependence
Thin films
title Revealing Seed‐Mediated Structural Evolution of Copper‐Silicide Nanostructures: Generating Structured Current Collectors for Rechargeable Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T11%3A50%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20Seed%E2%80%90Mediated%20Structural%20Evolution%20of%20Copper%E2%80%90Silicide%20Nanostructures:%20Generating%20Structured%20Current%20Collectors%20for%20Rechargeable%20Batteries&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Sankaran,%20Abinaya&rft.date=2024-06-01&rft.volume=36&rft.issue=23&rft.spage=e2310823&rft.epage=n/a&rft.pages=e2310823-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202310823&rft_dat=%3Cproquest_cross%3E3065128750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3065128750&rft_id=info:pmid/38421219&rfr_iscdi=true