New approaches to dissect leaf hydraulics reveal large gradients in living tissues of tomato leaves
Summary The water status of the living tissue in leaves is critical in determining plant function and global exchange of water and CO2. Despite significant advances in the past two decades, persistent questions remain about the tissue‐specific origins of leaf hydraulic properties and their dependenc...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2024-04, Vol.242 (2), p.453-465 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 465 |
---|---|
container_issue | 2 |
container_start_page | 453 |
container_title | The New phytologist |
container_volume | 242 |
creator | Jain, Piyush Huber, Annika E. Rockwell, Fulton E. Sen, Sabyasachi Holbrook, N. Michele Stroock, Abraham D. |
description | Summary
The water status of the living tissue in leaves is critical in determining plant function and global exchange of water and CO2. Despite significant advances in the past two decades, persistent questions remain about the tissue‐specific origins of leaf hydraulic properties and their dependence on water status.
We use a fluorescent nanoparticle reporter that provides water potential in the mesophyll apoplast adjacent to the epidermis of intact leaves to complement existing methods based on the Scholander Pressure Chamber (SPC). Working in tomato leaves, this approach provides access to the hydraulic conductance of the whole leaf, xylem, and outside‐xylem tissues.
These measurements show that, as stem water potential decreases, the water potential in the mesophyll apoplast can drop below that assessed with the SPC and can fall significantly below the turgor loss point of the leaf. We find that this drop in potential, dominated by the large loss (10‐fold) of hydraulic conductance of the outside‐xylem tissue, is not however strong enough to significantly limit transpiration.
These observations highlight the need to reassess models of water transfer through the outside‐xylem tissues, the potential importance of this tissue in regulating transpiration, and the power of new approaches for probing leaf hydraulics. |
doi_str_mv | 10.1111/nph.19585 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2932939422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932939422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3885-f557257b18745096898f9a5cbc1dba91d60c6d00296d68a654b415e5e6b679b3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EouVj4A8gSywwBOwkduwRVXxJFTAwsEWOc2mN3KTYSav-ew4KDEicTrrluUd3LyEnnF1yrKt2Ob_kWiixQ8Y8lzpRPCt2yZixVCUyl68jchDjG2NMC5nuk1Gmcp6lXI6JfYQ1Nctl6IydQ6R9R2sXI9ieejANnW_qYAbvbKQBVmA89SbMgM6CqR20faSupd6tXDujPS4O6Oga1CwMqlCxgnhE9hrjIxx_z0PycnvzMrlPpk93D5PraWIzpUTSCFGkoqi4KnLBtFRaNdoIW1leV0bzWjIra_xJy1oqI0Ve5VyAAFnJQlfZITnfavGZd7yjLxcuWvDetNANsUx1hq3zNEX07A_61g2hxeOQkpqjVwukLraUDV2MAZpyGdzChE3JWfkZfInBl1_BI3v6bRyqBdS_5E_SCFxtgbXzsPnfVD4-32-VH2EsjJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969141595</pqid></control><display><type>article</type><title>New approaches to dissect leaf hydraulics reveal large gradients in living tissues of tomato leaves</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Jain, Piyush ; Huber, Annika E. ; Rockwell, Fulton E. ; Sen, Sabyasachi ; Holbrook, N. Michele ; Stroock, Abraham D.</creator><creatorcontrib>Jain, Piyush ; Huber, Annika E. ; Rockwell, Fulton E. ; Sen, Sabyasachi ; Holbrook, N. Michele ; Stroock, Abraham D.</creatorcontrib><description>Summary
The water status of the living tissue in leaves is critical in determining plant function and global exchange of water and CO2. Despite significant advances in the past two decades, persistent questions remain about the tissue‐specific origins of leaf hydraulic properties and their dependence on water status.
We use a fluorescent nanoparticle reporter that provides water potential in the mesophyll apoplast adjacent to the epidermis of intact leaves to complement existing methods based on the Scholander Pressure Chamber (SPC). Working in tomato leaves, this approach provides access to the hydraulic conductance of the whole leaf, xylem, and outside‐xylem tissues.
These measurements show that, as stem water potential decreases, the water potential in the mesophyll apoplast can drop below that assessed with the SPC and can fall significantly below the turgor loss point of the leaf. We find that this drop in potential, dominated by the large loss (10‐fold) of hydraulic conductance of the outside‐xylem tissue, is not however strong enough to significantly limit transpiration.
These observations highlight the need to reassess models of water transfer through the outside‐xylem tissues, the potential importance of this tissue in regulating transpiration, and the power of new approaches for probing leaf hydraulics.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.19585</identifier><identifier>PMID: 38413216</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Apoplast ; Carbon dioxide ; Conductance ; Decompression chambers ; drought ; Epidermis ; Fluid flow ; Fluorescence ; Hydraulic properties ; Hydraulics ; leaf water relations ; Leaves ; Mesophyll ; Nanoparticles ; nanosensor ; outside‐xylem conductance ; Plant Leaves - physiology ; Plant Transpiration ; Pressure chambers ; Skin ; Solanum lycopersicum ; Tissue ; Tissues ; tomato ; Tomatoes ; Transpiration ; Turgor ; undersaturation ; Water ; Water - physiology ; Water potential ; Water transfer ; Xylem ; Xylem - physiology</subject><ispartof>The New phytologist, 2024-04, Vol.242 (2), p.453-465</ispartof><rights>2024 The Authors © 2024 New Phytologist Foundation</rights><rights>2024 The Authors New Phytologist © 2024 New Phytologist Foundation.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3885-f557257b18745096898f9a5cbc1dba91d60c6d00296d68a654b415e5e6b679b3</citedby><cites>FETCH-LOGICAL-c3885-f557257b18745096898f9a5cbc1dba91d60c6d00296d68a654b415e5e6b679b3</cites><orcidid>0000-0002-2527-6033 ; 0000-0002-0937-2324 ; 0000-0002-2852-5285 ; 0000-0002-8145-9977 ; 0000-0003-3325-5395 ; 0000-0003-1015-5316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.19585$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.19585$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38413216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jain, Piyush</creatorcontrib><creatorcontrib>Huber, Annika E.</creatorcontrib><creatorcontrib>Rockwell, Fulton E.</creatorcontrib><creatorcontrib>Sen, Sabyasachi</creatorcontrib><creatorcontrib>Holbrook, N. Michele</creatorcontrib><creatorcontrib>Stroock, Abraham D.</creatorcontrib><title>New approaches to dissect leaf hydraulics reveal large gradients in living tissues of tomato leaves</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary
The water status of the living tissue in leaves is critical in determining plant function and global exchange of water and CO2. Despite significant advances in the past two decades, persistent questions remain about the tissue‐specific origins of leaf hydraulic properties and their dependence on water status.
We use a fluorescent nanoparticle reporter that provides water potential in the mesophyll apoplast adjacent to the epidermis of intact leaves to complement existing methods based on the Scholander Pressure Chamber (SPC). Working in tomato leaves, this approach provides access to the hydraulic conductance of the whole leaf, xylem, and outside‐xylem tissues.
These measurements show that, as stem water potential decreases, the water potential in the mesophyll apoplast can drop below that assessed with the SPC and can fall significantly below the turgor loss point of the leaf. We find that this drop in potential, dominated by the large loss (10‐fold) of hydraulic conductance of the outside‐xylem tissue, is not however strong enough to significantly limit transpiration.
These observations highlight the need to reassess models of water transfer through the outside‐xylem tissues, the potential importance of this tissue in regulating transpiration, and the power of new approaches for probing leaf hydraulics.</description><subject>Apoplast</subject><subject>Carbon dioxide</subject><subject>Conductance</subject><subject>Decompression chambers</subject><subject>drought</subject><subject>Epidermis</subject><subject>Fluid flow</subject><subject>Fluorescence</subject><subject>Hydraulic properties</subject><subject>Hydraulics</subject><subject>leaf water relations</subject><subject>Leaves</subject><subject>Mesophyll</subject><subject>Nanoparticles</subject><subject>nanosensor</subject><subject>outside‐xylem conductance</subject><subject>Plant Leaves - physiology</subject><subject>Plant Transpiration</subject><subject>Pressure chambers</subject><subject>Skin</subject><subject>Solanum lycopersicum</subject><subject>Tissue</subject><subject>Tissues</subject><subject>tomato</subject><subject>Tomatoes</subject><subject>Transpiration</subject><subject>Turgor</subject><subject>undersaturation</subject><subject>Water</subject><subject>Water - physiology</subject><subject>Water potential</subject><subject>Water transfer</subject><subject>Xylem</subject><subject>Xylem - physiology</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp1kD1PwzAQhi0EouVj4A8gSywwBOwkduwRVXxJFTAwsEWOc2mN3KTYSav-ew4KDEicTrrluUd3LyEnnF1yrKt2Ob_kWiixQ8Y8lzpRPCt2yZixVCUyl68jchDjG2NMC5nuk1Gmcp6lXI6JfYQ1Nctl6IydQ6R9R2sXI9ieejANnW_qYAbvbKQBVmA89SbMgM6CqR20faSupd6tXDujPS4O6Oga1CwMqlCxgnhE9hrjIxx_z0PycnvzMrlPpk93D5PraWIzpUTSCFGkoqi4KnLBtFRaNdoIW1leV0bzWjIra_xJy1oqI0Ve5VyAAFnJQlfZITnfavGZd7yjLxcuWvDetNANsUx1hq3zNEX07A_61g2hxeOQkpqjVwukLraUDV2MAZpyGdzChE3JWfkZfInBl1_BI3v6bRyqBdS_5E_SCFxtgbXzsPnfVD4-32-VH2EsjJk</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Jain, Piyush</creator><creator>Huber, Annika E.</creator><creator>Rockwell, Fulton E.</creator><creator>Sen, Sabyasachi</creator><creator>Holbrook, N. Michele</creator><creator>Stroock, Abraham D.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2527-6033</orcidid><orcidid>https://orcid.org/0000-0002-0937-2324</orcidid><orcidid>https://orcid.org/0000-0002-2852-5285</orcidid><orcidid>https://orcid.org/0000-0002-8145-9977</orcidid><orcidid>https://orcid.org/0000-0003-3325-5395</orcidid><orcidid>https://orcid.org/0000-0003-1015-5316</orcidid></search><sort><creationdate>202404</creationdate><title>New approaches to dissect leaf hydraulics reveal large gradients in living tissues of tomato leaves</title><author>Jain, Piyush ; Huber, Annika E. ; Rockwell, Fulton E. ; Sen, Sabyasachi ; Holbrook, N. Michele ; Stroock, Abraham D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3885-f557257b18745096898f9a5cbc1dba91d60c6d00296d68a654b415e5e6b679b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Apoplast</topic><topic>Carbon dioxide</topic><topic>Conductance</topic><topic>Decompression chambers</topic><topic>drought</topic><topic>Epidermis</topic><topic>Fluid flow</topic><topic>Fluorescence</topic><topic>Hydraulic properties</topic><topic>Hydraulics</topic><topic>leaf water relations</topic><topic>Leaves</topic><topic>Mesophyll</topic><topic>Nanoparticles</topic><topic>nanosensor</topic><topic>outside‐xylem conductance</topic><topic>Plant Leaves - physiology</topic><topic>Plant Transpiration</topic><topic>Pressure chambers</topic><topic>Skin</topic><topic>Solanum lycopersicum</topic><topic>Tissue</topic><topic>Tissues</topic><topic>tomato</topic><topic>Tomatoes</topic><topic>Transpiration</topic><topic>Turgor</topic><topic>undersaturation</topic><topic>Water</topic><topic>Water - physiology</topic><topic>Water potential</topic><topic>Water transfer</topic><topic>Xylem</topic><topic>Xylem - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Piyush</creatorcontrib><creatorcontrib>Huber, Annika E.</creatorcontrib><creatorcontrib>Rockwell, Fulton E.</creatorcontrib><creatorcontrib>Sen, Sabyasachi</creatorcontrib><creatorcontrib>Holbrook, N. Michele</creatorcontrib><creatorcontrib>Stroock, Abraham D.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Piyush</au><au>Huber, Annika E.</au><au>Rockwell, Fulton E.</au><au>Sen, Sabyasachi</au><au>Holbrook, N. Michele</au><au>Stroock, Abraham D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New approaches to dissect leaf hydraulics reveal large gradients in living tissues of tomato leaves</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2024-04</date><risdate>2024</risdate><volume>242</volume><issue>2</issue><spage>453</spage><epage>465</epage><pages>453-465</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary
The water status of the living tissue in leaves is critical in determining plant function and global exchange of water and CO2. Despite significant advances in the past two decades, persistent questions remain about the tissue‐specific origins of leaf hydraulic properties and their dependence on water status.
We use a fluorescent nanoparticle reporter that provides water potential in the mesophyll apoplast adjacent to the epidermis of intact leaves to complement existing methods based on the Scholander Pressure Chamber (SPC). Working in tomato leaves, this approach provides access to the hydraulic conductance of the whole leaf, xylem, and outside‐xylem tissues.
These measurements show that, as stem water potential decreases, the water potential in the mesophyll apoplast can drop below that assessed with the SPC and can fall significantly below the turgor loss point of the leaf. We find that this drop in potential, dominated by the large loss (10‐fold) of hydraulic conductance of the outside‐xylem tissue, is not however strong enough to significantly limit transpiration.
These observations highlight the need to reassess models of water transfer through the outside‐xylem tissues, the potential importance of this tissue in regulating transpiration, and the power of new approaches for probing leaf hydraulics.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38413216</pmid><doi>10.1111/nph.19585</doi><tpages>465</tpages><orcidid>https://orcid.org/0000-0002-2527-6033</orcidid><orcidid>https://orcid.org/0000-0002-0937-2324</orcidid><orcidid>https://orcid.org/0000-0002-2852-5285</orcidid><orcidid>https://orcid.org/0000-0002-8145-9977</orcidid><orcidid>https://orcid.org/0000-0003-3325-5395</orcidid><orcidid>https://orcid.org/0000-0003-1015-5316</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2024-04, Vol.242 (2), p.453-465 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_2932939422 |
source | MEDLINE; Wiley Journals |
subjects | Apoplast Carbon dioxide Conductance Decompression chambers drought Epidermis Fluid flow Fluorescence Hydraulic properties Hydraulics leaf water relations Leaves Mesophyll Nanoparticles nanosensor outside‐xylem conductance Plant Leaves - physiology Plant Transpiration Pressure chambers Skin Solanum lycopersicum Tissue Tissues tomato Tomatoes Transpiration Turgor undersaturation Water Water - physiology Water potential Water transfer Xylem Xylem - physiology |
title | New approaches to dissect leaf hydraulics reveal large gradients in living tissues of tomato leaves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20approaches%20to%20dissect%20leaf%20hydraulics%20reveal%20large%20gradients%20in%20living%20tissues%20of%20tomato%20leaves&rft.jtitle=The%20New%20phytologist&rft.au=Jain,%20Piyush&rft.date=2024-04&rft.volume=242&rft.issue=2&rft.spage=453&rft.epage=465&rft.pages=453-465&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.19585&rft_dat=%3Cproquest_cross%3E2932939422%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2969141595&rft_id=info:pmid/38413216&rfr_iscdi=true |